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Foreword

This book brings you face-to-face with the most fundamental idea in computer programming:

The interpreter for a computer language is just another program.

It sounds obvious, doesn't it? But the implications are profound. If you are a computational 
theorist, the interpreter idea recalls Gödel's discovery of the limitations of formal logical systems, 
Turing's concept of a universal computer, and von Neumann's basic notion of the stored-program 
machine. If you are a programmer, mastering the idea of an interpreter is a source of great power. 
It provokes a real shift in mindset, a basic change in the way you think about programming.

I did a lot of programming before I learned about interpreters, and I produced some substantial 
programs. One of them, for example, was a large data-entry and information-retrieval system 
written in PL/I. When I implemented my system, I viewed PL/I as a fixed collection of rules 
established by some unapproachable group of language designers. I saw my job as not to modify 
these rules, or even to understand them deeply, but rather to pick through the (very) large manual, 
selecting this or that feature to use. The notion that there was some underlying structure to the way 
the language was organized, and that I might want to override some of the language designers' 
decisions, never occurred to me. I didn't know how to create embedded sublanguages to help 
organize my implementation, so the entire program seemed like a large, complex mosaic, where 
each piece had to be carefully shaped and fitted into place, rather than a cluster of languages, 
where the pieces could be flexibly combined. If you don't understand interpreters, you can still 
write programs; you can even be a competent programmer. But you can't be a master.



 

There are three reasons why as a programmer you should learn about interpreters.

First, you will need at some point to implement interpreters, perhaps not interpreters for full-
blown general-purpose languages, but interpreters just the same. Almost every complex computer 
system with which people interact in flexible ways—a computer drawing tool or an information-
retrieval system, for example—includes some sort of interpreter that structures the interaction. 
These programs may include complex individual operations—shading a region on the display 
screen, or performing a database search—but the interpreter is the glue that lets you combine 
individual operations into useful patterns. Can you use the result of one operation as the input to 
another operation? Can you name a sequence of operations? Is the name local or global? Can you 
parameterize a sequence of operations, and give names to its inputs? And so on. No matter how 
complex and polished the individual operations are, it is often the quality of the glue that most 
directly determines the power of the system. It's easy to find examples of programs with good 
individual operations, but lousy glue; looking back on it, I can see that my PL/I database program 
certainly had lousy glue.

Second, even programs that are not themselves interpreters have important interpreter-like pieces. 
Look inside a sophisticated computer-aided design system and you're likely to find a geometric 
recognition language, a graphics interpreter, a rule-based control interpreter, and an object-
oriented language interpreter all working together. One of the most powerful ways to structure a 
complex program is as a collection of languages, each of which provides a different perspective, a 
different way of working with the program elements. Choosing the right kind of language for the 
right purpose, and understanding the implementation tradeoffs involved: that's what the study of 
interpreters is about.

The third reason for learning about interpreters is that programming techniques that explicitly 
involve the structure of language are becoming increasingly important. Today's concern with 
designing and manipulating class hierarchies in object-oriented systems is only one example of 
this trend. Perhaps this is an inevitable consequence of the fact that our programs are becoming 
increasingly complex—thinking more explicitly about languages may be our best tool for dealing 
with this complexity. Consider again the basic idea: the interpreter itself is just a program. But that 
program is written in some language, whose interpreter is itself just a program written in some 
language whose interpreter is itself. . . . Perhaps the whole distinction between program and 
programming language is a misleading idea, and



 

future programmers will see themselves not as writing programs in particular, but as creating new 
languages for each new application.

Friedman, Wand, and Haynes have done a landmark job, and their book will change the landscape 
of programming-language courses. They don't just tell you about interpreters; they show them to 
you. The core of the book is a tour de force sequence of interpreters starting with an abstract high-
level language and progressively making linguistic features explicit until we reach a state 
machine. You can actually run this code, study and modify it, and change the way these 
interpreters handle scoping, parameter-passing, control structure, etc.

Having used interpreters to study the execution of languages, the authors show how the same ideas 
can be used to analyze programs without running them. In two new chapters, they show how to 
implement type checkers and inferencers, and how these features interact in modern object-
oriented languages.

Part of the reason for the appeal of this approach is that the authors have chosen a good tool—the 
Scheme language, which combines the uniform syntax and data-abstraction capabilities of Lisp 
with the lexical scoping and block structure of Algol. But a powerful tool becomes most powerful 
in the hands of masters. The sample interpreters in this book are outstanding models. Indeed, since 
they are runnable models, I'm sure that these interpreters and analyzers will find themselves at the 
cores of many programming systems over the coming years.

This is not an easy book. Mastery of interpreters does not come easily, and for good reason. The 
language designer is a further level removed from the end user than is the ordinary application 
programmer. In designing an application program, you think about the specific tasks to be 
performed, and consider what features to include. But in designing a language, you consider the 
various applications people might want to implement, and the ways in which they might 
implement them. Should your language have static or dynamic scope, or a mixture? Should it have 
inheritance? Should it pass parameters by reference or by value? Should continuations be explicit 
or implicit? It all depends on how you expect your language to be used, on which kinds of 
programs should be easy to write, and which you can afford to make more difficult.

Also, interpreters really are subtle programs. A simple change to a line of code in an interpreter 
can make an enormous difference in the behavior of the resulting language. Don't think that you 
can just skim these programs—very few people in the world can glance at a new interpreter and 
predict



 

from that how it will behave even on relatively simple programs. So study these programs. Better 
yet, run them—this is working code. Try interpreting some simple expressions, then more 
complex ones. Add error messages. Modify the interpreters. Design your own variations. Try to 
really master these programs, not just get a vague feeling for how they work.

If you do this, you will change your view of your programming, and your view of yourself as a 
programmer. You'll come to see yourself as a designer of languages rather than only a user of 
languages, as a person who chooses the rules by which languages are put together, rather than only 
a follower of rules that other people have chosen.

Hal AbelsonCambridge, MAAugust, 2000



 

Preface

Goal

This book is an analytic study of programming languages. Our goal is to provide a deep, working 
understanding of the essential concepts of programming languages. These essentials have proved 
to be of enduring importance; they form a basis for understanding future developments in 
programming languages.

Most of these essentials relate to the semantics, or meaning, of program elements. Such meanings 
reflect how program elements are interpreted as the program executes. Programs called 
interpreters provide the most direct, executable expression of program semantics. They process a 
program by directly analyzing an abstract representation of the program text. We therefore choose 
interpreters as our primary vehicle for expressing the semantics of programming language 
elements.

The most interesting question about a program as object is, "What does it do?" The study of 
interpreters tells us this. Interpreters are critical because they reveal nuances of meaning, and are 
the direct path to more efficient compilation and to other kinds of program analyses.

Interpreters are also illustrative of a broad class of systems that transform information from one 
form to another based on syntax structure. Compilers, for example, transform programs into forms 
suitable for interpretation by hardware or virtual machines. Though general compilation 
techniques are beyond the scope of this book, we do develop several elementary program 
translation systems. These reflect forms of program analysis typical of compilation, such as 
control transformation, variable binding resolution, and type checking.



 

The following are some of the strategies that distinguish our approach.

1. Each new concept is explained through the use of a small language. These languages are often 
cumulative: later languages may rely on the features of earlier ones.

2. Language processors such as interpreters and type checkers are used to explain the behavior of 
programs in a given language. They express language design decisions in a manner that is both 
formal (unambiguous and complete) and executable.

3. When appropriate, we use interfaces and specifications to create data abstractions. In this way, 
we can change data representation without changing programs. We use this to investigate 
alternative implementation strategies.

4. Our language processors are written both at the very high level needed to produce a concise and 
comprehensible view of semantics and at the much lower level needed to understand 
implementation strategies.

5. We show how simple algebraic manipulation can be used to predict the behavior of programs 
and to derive their properties. In general, however, we make little use of mathematical notation, 
preferring instead to study the behavior of programs that constitute the implementations of our 
languages.

6. The text explains the key concepts, while the exercises explore alternative designs and other 
issues. For example, the text deals with static binding, but dynamic binding is discussed in the 
exercises. One thread of exercises applies the concept of lexical addressing to the various 
languages developed in the book.

We provide several views of programming languages using widely varying levels of abstraction. 
Frequently our interpreters provide a very high-level view that expresses language semantics in a 
very concise fashion, not far from that of formal mathematical semantics. At the other extreme, we 
demonstrate how programs may be transformed into a very low-level form characteristic of 
assembly language. By accomplishing this transformation in small stages, we maintain a clear 
connection between the high-level and low-level views.



 

Organization

The first two chapters provide the foundations for a careful study of programming languages. 
Chapter 1 emphasizes the connection between inductive data specification and recursive 
programming and introduces several notions related to the scope of variables. Chapter 2 
introduces a data type facility. This leads to a discussion of data abstraction and examples of 
representational transformations of the sort used in subsequent chapters.

Chapter 3 uses these foundations to describe the behavior of programming languages. It introduces 
interpreters as mechanisms for explaining the run-time behavior of languages and develops an 
interpreter for a simple, lexically scoped language with first-class procedures, recursion, and 
assignment to variables. This interpreter is the basis for much of the material in the remainder of 
the book. The chapter then explores call-by-reference, call-by-need, and call-by-name parameter-
passing mechanisms, and culminates with a sketch of an interpreter for an imperative language.

Chapter 4 extends the language of chapter 3 with type declarations. First we implement a type 
checker. Next we show how to use the types to enforce abstraction boundaries. Finally we show 
how the types in program can be deduced by a unification-based type inference algorithm.

Chapter 5 presents the basic concepts of object-oriented languages, centered on classes (but 
ignoring types, which are deferred to chapter 6). We develop an efficient run-time architecture, 
which is used as the basis for the material in chapter 6.

Chapter 6 combines the ideas of the type checker of chapter 4 with those of the object-oriented 
language of chapter 5, leading to a conventional typed object-oriented language. This requires 
introducing new concepts including abstract classes, abstract methods, and casting.

Chapter 7 rewrites our basic interpreter in continuation-passing style. The control structure that is 
needed to run the interpreter thereby shifts from recursion to iteration. This exposes the control 
mechanisms of the interpreted language, and strengthens one's intuition for control issues in 
general. It also provides the means for extending the interpreter with exception-handling and multi-
threading mechanisms. Finally, we use continuation-passing style to present logic programming.



 

Chapter 8 is the companion to the previous chapter. There we show how to transform our familiar 
interpreter into continuation-passing style; here we show how to accomplish this for a much larger 
class of programs. Continuation-passing style is a powerful programming tool, for it allows any 
sequential control mechanism to be implemented in almost any language. The algorithm is also a 
fine example of an abstractly specified source-to-source program transformation.

The dependencies of the various chapters are shown in the figure below.

Finally, appendix A describes our SLLGEN parsing system.

Usage

This material has been used in both undergraduate and graduate courses. In addition, it has been 
used in continuing education courses for professional programmers. We assume background in 
data structures and experience both in a procedural language such as C, C++, or Java, and in 
Scheme.

Exercises are a vital part of the text and are scattered throughout. They range in difficulty from 
being trivial if related material is understood [ ], to requiring many hours of thought and 
programming work [ ]. A great deal of material of applied, historical, and theoretical interest 
resides within them. We recommend that each exercise be read and some thought be given as to 
how to solve it. Although we write our program interpretation and transformation systems in 
Scheme, any language that supports both first-class procedures and assignment (ML, Common 
Lisp, etc.) is adequate for working the exercises.



 

Exercise 0.1 [ ] We often use phrases like "some languages have property X." For each such phrase, find one 
or more languages that have the property and one or more languages that do not have the property. Feel free to 
ferret out this information from any descriptive book on programming languages (say (Scott, 2000), (Sethi, 
1996), or (Pratt & Zelkowitz, 1996)).

Exercise 0.2 [ ] Determine the rationale for the existence of index items, such as cons-prim, that do not 
appear in the body of the book.

This is a hands-on book: everything discussed in the book may be implemented within the limits 
of a typical university course. Because the abstraction facilities of functional programming 
languages are especially suited to this sort of programming, we can write substantial language-
processing systems that are nevertheless compact enough that one can understand and manipulate 
them with reasonable effort.

The web site, available through the publisher, includes complete Scheme code for all of the 
interpreters and analyzers in this book. The code is as compliant with R5RS (Kelsey et al., 1998) 
as we could make it. The site includes pointers to several Scheme implementations (some of 
which are freely available) and compatibility files that should allow our code to run without 
change on these implementations or any Scheme implementation that is R5RS-compliant.
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1 Inductive Sets of Data.

This chapter introduces recursive programming, along with its relation to mathematical induction. 
The notion of scope, which plays a primary role in programming languages, is also presented. 
Section 1.1 and section 1.2 introduce methods for inductively specifying data structures and show 
how such specifications may be used to guide the construction of recursive programs. Section 1.3 
then introduces the notions of variable binding and scope.

The programming exercises are the heart of this chapter. They provide experience that is essential 
for mastering the technique of recursive programming upon which the rest of this book is based.

1.1 Recursively Specified Data

When writing code for a procedure, we must know precisely what kinds of values may occur as 
arguments to the procedure, and what kinds of values it is legal for the procedure to return. Often 
these sets of values are complex. In this section we introduce formal techniques for specifying sets 
of values.

1.1.1 Inductive Specification

Inductive specification is a powerful method of specifying a set of values. To illustrate this 
method, we use it to describe a certain subset of the natural numbers:

Definition 1.1.1 Define the set S to be the smallest set of natural numbers satisfying the following 
two properties:

1. 0 ∈ S, and

2. Whenever x ∈ S, then x + 3 ∈ S.



 

A "smallest set" is the one that satisfies properties 1 and 2 and that is a subset of any other set 
satisfying properties 1 and 2. It is easy to see that there can be only one such set: if S1 and S2 both 
satisfy properties 1 and 2, and both are smallest, then S1 ⊆ S2 (since S1 is smallest), and S2 ⊆ S1 
(since S2 is smallest), hence S1 = S2.

Let us see if we can describe some partial information about S to arrive at a non-inductive 
specification. We know that 0 is in S, by property 1. Since 0 ∈ S, by property 2 we conclude that 3 
∈ S. Then since 3 ∈ S, by property 2 we conclude that 6 ∈ S, and so on. So we see that all the 
multiples of 3 are in S. If we let M denote the set of all multiples of 3, we can restate this 
conclusion as M ⊆ S. But the set M itself satisfies properties 1 and 2. Since S is a subset of every 
set that satisfies properties 1 and 2, it must be that S ⊆ M. So we deduce that S = M, the set of 
multiples of 3. This is plausible: we know all the multiples of 3 must be in S, and anything else is 
extraneous.

This is a typical inductive definition. To specify a set S inductively, define it to be the smallest set 
satisfying two properties of the following form:

1. Some specific values must be in S.

2. If certain values are in S, then certain other values are also in S.

Sticking to this recipe guarantees that S consists precisely of those values inserted by property 1 
and those values included by repeated application of property 2. As stated, this recipe is rather 
vague. It can be stated more precisely, but that would take us too far afield. Instead, let us see how 
this process works on some more examples.

Definition 1.1.2 The set list-of-numbers is the smallest set of values satisfying the two properties:

1. The empty list is a list-of-numbers, and

2. If l is a list-of-numbers and n is a number, then the pair (n . l) is a list-of-numbers.

From this definition we infer the following:

1. () is a list-of-numbers, because of property 1.

2. (14 . ()) is a list-of-numbers, because 14 is a number and () is a list-of-numbers.



 

3. (3 . (14 . ())) is a list-of-numbers, because 3 is a number and (14 . ()) is a list-of-
numbers.

4. (-7 . (3 . (14 . ()))) is a list-of-numbers, because -7 is a number and (3 . 
(14 . ())) is a list-of-numbers.

5. Nothing is a list-of-numbers unless it is built in this fashion.

Converting from dot notation to list notation, we see that (), (14), (3 14), and (-7 3 
14) are all members of list-of-numbers.

1.1.2 Defining Sets of Values with Backus-Naur Form

The previous example is fairly straightforward, but it is easy to imagine how the process of 
describing more complex data types becomes quite cumbersome. To remedy this, we use a 
notation called Backus-Naur Form, or BNF. BNF was originally developed to specify the syntactic 
structure of programming languages, but we will use it to define sets of values as well by using the 
printed representation of those values.

For example, we can define the set list-of-numbers in BNF as follows:

This set of rules is called a grammar.

Here we have two rules corresponding to the two properties in Definition 1.1.2 above. The first 
rule says that the empty list is in <list-of-numbers>, and the second says that if n is in <number> 
and l is in <list-of-numbers>, then (n . l) is in <list-of-numbers>.

Let us look at the pieces of this definition. In this definition we have:

• Nonterminal Symbols. These are the names of the sets being defined. These are customarily 
written with angle brackets around the name of the set, e.g. <list-of-numbers>. In this case there is 
only one, but in general, there might be several sets being defined. These sets are sometimes called 
syntactic categories.

• Terminal Symbols. These are the characters in the external representation, in this case ., (, and ).

• Productions. The rules are often called productions. Each production has a left-hand side, which 
is a nonterminal symbol, and a right-hand side,



 

which consists of terminal and nonterminal symbols. The left- and right-hand sides are usually 
separated by the symbol ::=, read is or can be. The right-hand side specifies a method for 
constructing members of the syntactic category in terms of other syntactic categories and terminal 
symbols, such as the left and right parentheses, and the period.

Often some syntactic categories mentioned in a BNF rule are left undefined when their meaning is 
sufficiently clear from context, such as <number>.

BNF is often extended with a few notational shortcuts. One can write a set of rules for a single 
syntactic category by writing the left-hand side and ::= just once, followed by all the right-hand 
sides separated by the special symbol | (vertical bar, read or). A <list-of-numbers> can then be 
defined by

Another useful notation is to omit the left-hand side of a production when it is the same as the left-
hand side of the preceding production. Using this convention our example would be written as:

Another shortcut is the Kleene star, expressed by the notation {. . .}*. When this appears in a right-
hand side, it indicates a sequence of any number of instances of whatever appears between the 
braces. Using the Kleene star, the definition of <list-of-numbers> in list notation is simply

This includes the possibility of no instances at all. If there are zero instances, we get the empty list.

A variant of the star notation is Kleene plus {. . .}+, which indicates a sequence of one or more 
instances. Substituting + for * in the above example would define the syntactic category of non-
empty lists of numbers. These notational shortcuts are just that—it is always possible to do 
without them by using additional BNF rules.

Yet another variant of the star notation is the separated list notation. If <expression> is a 
nonterminal, we write {<expression>}*(c) to denote a sequence of any number of instances of the 
nonterminal <expression>, separated by the non-empty character sequence c. This includes the 
possibility of no instances at all. If there are zero instances, we get the empty string.



 

If a set is specified using BNF rules, a syntactic derivation may be used to prove that a given data 
value is a member of the set. Such a derivation starts with the nonterminal corresponding to the 
set. At each step, indicated by an arrow ⇒, a nonterminal is replaced by the right-hand side of a 
corresponding rule, or with a known member of its syntactic class if the class was left undefined. 
For example, the previous demonstration that (14 . ()) is a list of numbers may be formalized 
with the following syntactic derivation:

    <list-of-numbers>⇒ (<number> . <list-of-numbers>)⇒ (14 . <list-of-numbers>)⇒ (14 . 
())

The order in which nonterminals are replaced does not matter. Thus another possible derivation of 
(14 . ()) is

    <list-of-numbers>⇒ (<number> . <list-of-numbers>)⇒ (<number> . ())⇒ (14 . ())

Exercise 1.1 [ ] Write a syntactic derivation that proves (-7 . (3 . (14 . ()))) is a list of 
numbers.

Let us consider the BNF definitions of some other useful sets. Many symbol manipulation 
procedures are designed to operate on lists that contain only symbols and other similarly restricted 
lists. We formalize this notion with these rules:

The literal representation of an s-list contains only parentheses and symbols. For example,

(a b c)(an (((s-list)) (with () lots) ((of) nesting)))

A binary tree with numeric leaves and interior nodes labeled with symbols may be represented 
using three-element lists for the interior nodes as follows



 

Examples of such trees follow:

12(foo 1 2)(bar 1 (foo 1 2))(baz (bar 1 (foo 1 2)) (biz 4 5))

A simple mini-language that is often used to study the theory of programming languages is the 
lambda calculus. This language consists only of variable references, lambda expressions with a 
single formal parameter, and procedure calls. We can define it with the following grammar:

where <identifier> is any symbol other than lambda. This grammar defines the elements of 
<expression> as Scheme values, so it is convenient to write programs that manipulate them.

We can even use BNF to specify concisely the syntactic category of data in Scheme. In Scheme, 
numbers, symbols, booleans, and strings all have literal representations, which we associate with 
the syntactic categories <number>, <symbol>, <boolean>, and <string>, respectively. We can then 
use BNF to specify the representations for lists, improper lists (which end with dotted pairs), and 
vectors:

These four syntactic categories are all defined in terms of each other. This is legitimate because 
each of these compound data types contains components that may be numbers, symbols, booleans, 
strings, or other lists, improper lists or vectors.



 

To illustrate the use of this grammar, consider the following syntactic derivation that proves (#t 
(foo . ()) 3) is a list.

    <list>⇒ (<datum> <datum> <datum>)⇒ (<boolean> <datum> <datum>)⇒ (#t <datum> 
<datum>)⇒ (#t <dotted-datum> <datum>)⇒ (#t ({<datum>}+ . <datum>) <datum>)⇒ (#t 
(<symbol> . <datum>) <datum>)⇒ (#t (foo . <datum>) <datum>)⇒ (#t (foo . <list>) 
<datum>)⇒ (#t (foo . ()) <datum>)⇒ (#t (foo . ()) <number>)⇒ (#t 
(foo . ()) 3)

All three elements of the outer list are introduced at once. This shortcut is possible because the 
grammar uses a Kleene star. Of course, the Kleene star and plus notation could be eliminated by 
introducing new nonterminals and productions, and the three list elements would then be 
introduced with three derivation steps instead of one.

Exercise 1.2 [ ] Rewrite the <datum> grammar without using the Kleene star or plus. Then indicate the 
changes to the above derivation that are required by this revised grammar.

Exercise 1.3 [ ] Write a syntactic derivation that proves (a "mixed" # (bag (of . 
data))) is a datum, using either the grammar in the book or the revised grammar from the preceding 
exercise. What is wrong with (a . b . c)?

BNF rules are said to be context free because a rule defining a given syntactic category may be 
applied in any context that makes reference to that syntactic category. Sometimes this is not 
restrictive enough: a node in a binary search tree is either empty or contains a key and two subtrees

This correctly describes the structure of each node but fails to mention an important fact about 
binary search trees: all the keys in the left subtree are less than (or equal to) the key in the current 
node, and all the keys in the right subtree are greater than the key in the current node. Such 
constraints are said to be context sensitive, because they depend on the context in which they are 
used.



 

Context-sensitive constraints also arise when specifying the syntax of programming languages. 
For instance, in many languages every identifier must be declared before it is used. This constraint 
on the use of identifiers is sensitive to the context of their use. Formal methods can be used to 
specify context-sensitive constraints, but these methods are far more complicated than BNF. In 
practice, the usual approach is first to specify a context-free grammar using BNF. Context-
sensitive constraints are then added using other methods, usually prose, to complete the 
specification of a context-sensitive syntax.

1.1.3 Induction

Having described sets inductively, we can use the inductive definitions in two ways: to prove 
theorems about members of the set and to write programs that manipulate them. Here we present 
an example of such a proof, using the example of binary trees from page 5; writing the programs is 
the subject of the next section.

Theorem 1.1.1 Let s ∈ <bintree>, where <bintree> is defined by

Then s contains an odd number of nodes.

Proof: The proof is by induction on the size of s, where we take the size of s to be the number of 
nodes in s. The induction hypothesis, IH(k), is that any tree of size ≤ k has an odd number of 
nodes. We follow the usual prescription for an inductive proof: we first prove that IH(0) is true, 
and we then prove that whenever k is a number such that IH is true for k, then IH is true for k + 1 
also.

1. There are no trees with 0 nodes, so IH(0) holds trivially.

2. Let k be a number such that IH(k) holds, that is, any tree with ≤ k nodes actually has an odd 
number of nodes. We need to show that IH(k + 1) holds as well: that any tree with ≤ k + 1 nodes 
has an odd number of nodes. If s has ≤ k + 1 nodes, there are exactly two possibilities according to 
the BNF definition of <bintree>:

(a) s could be of the form n, where n is a number. In this case, s has exactly one node, and one is 
odd.



 

(b) s could be of the form (sym s1 s2), where sym is a symbol and s1 and s2 are trees. Now s1 and s2 
must have fewer nodes than s. Since s has ≤ k + 1 nodes, s1 and s2 must have ≤ k nodes. Therefore 
they are covered by IH(k), and they must each have an odd number of nodes, say 2n1 + 1 and 2n2 
+ 1 nodes, respectively. Hence the total number of nodes in the tree, counting the two subtrees and 
the root, is

      which is once again odd.

This completes the proof of the claim that IH(k + 1) holds and therefore completes the induction. 

The key to the proof is that the substructures of a tree s are always smaller than s itself. Therefore 
the induction might be rephrased as follows:

1. IH is true on simple structures (those without substructures).

2. If IH is true on the substructures of s, then it is true on s itself.

This pattern of proof is called structural induction.

Exercise 1.4 [ ] Prove that if e ∈ <expression>, then there are the same number of left and right 
parentheses in e (where <expression> is defined as in Section 1.1.2).

1.2 Recursively Specified Programs

In the previous section, we used the method of inductive definition to characterize complicated 
sets. Starting with simple members of the set, the BNF rules were used to build more and more 
complex members of the set. We now use the same idea to define procedures for manipulating 
those sets. First we define the procedure's behavior on simple inputs, and then we use this 
behavior to define its behavior on more complex arguments.

Imagine we want to define a procedure to find nonnegative powers of numbers, e.g. e(n,x) = xn, 
where n is a nonnegative integer and x ≠ 0. It is easy to define a sequence of procedures that 
compute particular powers: e0(x) = x0, e1(x) = x1, e2(x) = x2:





 

In general, if n is a nonnegative integer,

At each stage, we use the fact that the problem has already been solved for smaller n. Next the subscript 
can be removed from e by making it a parameter:

1. If n is 0, e(n, x) = 1.

2. If n is greater than 0, we assume it is known how to solve the problem for n − 1. That is, we assume that e
(n − 1, x) is well defined. Therefore, e(n, x) = x × e(n − 1, x).

This gives us the definition:

To prove that e(n, x) = xn for any nonnegative integer n, we proceed by induction on n:

1. (Base Step) When n = 0, e(0,x) = 1 = x0.

2. (Induction Step) Assume that the procedure works when its first argument is k, that is, e(k, x) = xk for 
some nonnegative integer k. Then we claim that e(k + 1, x) = xk+1. We calculate as follows

This completes the induction.

We can write a program to compute e based upon the inductive definition

(define e  (lambda (n x)    (if (zero? n)      1      (* x        (e (- n 1) x)))))



 

The two branches of the if expression correspond to the two cases detailed in the definition.

If we can reduce a problem to a smaller subproblem, we can call the procedure that solves the 
problem to solve the subproblem. The solution it returns for the subproblem may then be used to 
solve the original problem. This works because each time we call the procedure, it is called with a 
smaller problem, until eventually it is called with a problem that can be solved directly, without 
another call to itself.

When a procedure calls itself in this manner, it is said to be recursively defined. Such recursive 
calls are possible in Scheme and most other languages. The general phenomenon is known as 
recursion, and it occurs in contexts other than programming, such as inductive definitions. Later 
we shall study how recursion is implemented in programming languages.

Often an inductive proof can lead us to a recursive procedure. In Theorem 1.1.1, we showed that 
the number of nodes in a binary tree, defined by

is always odd. Let us write a procedure count-nodes to count these nodes. If s is a number, 
then (count-nodes s) should be 1. If s is of the form (sym s1 s2), then (count-nodes s) 
should be (count-nodes s1) + (count-nodes s2) + 1. This leads to the program

(define count-nodes  (lambda (s)    (if (number? s)      1      (+ (count-
nodes (cadr s))         (count-nodes (caddr s))         1))))

The procedure and the proof of the theorem have the same structure.

1.2.1 Deriving Programs from BNF Data Specifications

In the previous example, we used induction on integers, so the subproblem was solved by 
recursively calling the procedure with a smaller value of n. When manipulating inductively 
defined structures, subproblems are usually solved by calling the procedure recursively on a 
substructure of the original.

A BNF definition for the type of data being manipulated serves as a guide both to where recursive 
calls should be used and to which base cases need to be handled. This is a fundamental point:



 

Follow the Grammar!

When defining a program based on structural induction, the structure of the program should be 
patterned after the structure of the data.

Typically this means that we will need one procedure for each syntactic category in the grammar. 
Each procedure will examine the input to see which production it corresponds to; for each 
nonterminal that appears in the right-hand side, we will have a recursive call to the procedure for 
that nonterminal.

As an example, consider a procedure that determines whether a given list is a member of <list-of-
numbers>.

A typical kind of program based on inductively defined structures is a predicate that determines 
whether a given value is a member of a particular set. Let us write a Scheme predicate list-of-
numbers? that takes a list and determines whether it belongs to the syntactic category <list-of-
numbers>.

> (list-of-numbers? '(1 2 3))#t> (list-of-numbers? '(1 two 3))#f> (list-of-
numbers? '(1 (2) 3))#f

We can define the set of lists as

and let us recall the definition of <list-of-numbers>:

We begin by writing down the simplest behavior of the procedure: what it does when the input is 
the empty list.

(define list-of-
numbers?  (lambda (lst)    (if (null? lst)      ...      ...)))

By the first production in the grammar for <list-of-numbers>, the empty list is a <list-of-
numbers>, so the answer should be #t.



 

(define list-of-
numbers?  (lambda (lst)    (if (null? lst)|     #t      ...)))

Throughout this book, bars in the left margin indicate lines that have changed since an earlier 
version of the same definition.

If the input is not empty, then by the grammar for <list>, it must be of the form

that is, a list whose car is a Scheme datum and whose cdr is a list. Comparing this to the grammar 
for <list-of-numbers>, we see that such a datum can be an element of <list-of-numbers> if and 
only if its car is a number and its cdr is a list-of-numbers. To find out if the cdr is a list-of-
numbers, we call list-of-numbers? recursively:

To prove the correctness of list-of-numbers?, we would like to use induction on the length 
of lst.

1. The procedure list-of-numbers? works correctly on lists of length 0, since the only list of 
length 0 is the empty list, for which the correct answer, true, is returned.

2. Assuming list-of-numbers? works correctly on lists of length k, we show that it works on 
lists of length k + 1. Let lst be such a list. By the definition of <list-of-numbers>, lst belongs 
to <list-of-numbers> if and only if its car is a number and its cdr belongs to <list-of-numbers>. 
Since lst is of length k + 1, its cdr is of length k, so by the induction hypothesis we can 
determine the cdr's membership in <list-of-numbers> by passing it to list-of-numbers?. 
Hence list-of-numbers? correctly computes membership in <list-of-numbers> for lists of 
length k + 1, and the induction is complete.



 

The procedure terminates because every time list-of-numbers? is called, it is passed a shorter list. Every time the 
procedure recurs, it will be working on shorter and shorter lists, until it reaches the empty list.

Exercise 1.5 [ ] This version of list-of-numbers? works properly only when its argument is a list. Extend the definition of list-
of-numbers? so that it will work on an arbitrary Scheme <datum> and return #f on any argument that is not a list.

As a second example, we define a procedure nth-elt that takes a list lst and a zero-based index n and returns element 
number n of lst.

> (nth-elt '(a b c) 1)b

The procedure nth-elt does for lists what vector-ref does for vectors.

Actually, Scheme provides the procedure list-ref, which is the same as nth-elt except for error reporting, but we choose 
another name because standard procedures should not be tampered with unnecessarily.

When n is 0, the answer is simply the car of lst. If n is greater than 0, then the answer is element n − 1 of lst's cdr. Since 
neither the car nor cdr of lst exists if lst is the empty list, we must guard the car and cdr operations so that we do not take 
the car or cdr of an empty list.

(define nth-elt  (lambda (lst n)    (if (null? lst)      (eopl:error 'nth-
elt        "List too short by ~s elements" (+ n 1))      (if (zero? n)        (car lst)        (nth-
elt (cdr lst) (- n 1))))))

The procedure eopl:error signals an error. Its first argument is a symbol that allows the error message to identify the 
procedure that called eopl:error. The second argument is a string that is then printed in the error message. There must then 
be an additional argument for each instance of the character sequence ~s in the string. The values of these arguments are printed 
in place of the corresponding ~s when the string is printed. After the error message is printed, the computation is aborted. 
eopl:error is not a standard Scheme procedure, but most implementations provide a similar facility.



 

Let us watch how nth-elt computes its answer:

  (nth-elt '(a b c d e) 3)= (nth-elt   '(b c d e) 2)= (nth-
elt     '(c d e) 1)= (nth-elt       '(d e) 0)= d

Here nth-elt recurs on shorter and shorter lists, and on smaller and smaller numbers.

If error checking were omitted, we would have to rely on car and cdr to complain about being 
passed the empty list, but their error messages would be less helpful. For example, if we received 
an error message from car, we might have to look for uses of car throughout our program. Even 
this would not find the error if nth-elt were provided by someone else, so that its definition 
was not a part of our program.

Let us try one more example of this kind before moving on to harder examples. The standard 
procedure length determines the number of elements in a list.

> (length '(a b c))3> (length '((x) ()))2

We write our own procedure, called list-length, to do the same thing. The length of the 
empty list is 0.

(define list-length  (lambda (lst)    (if (null? lst)      0      ...)))

The ellipsis is filled in by observing that the length of a non-empty list is one more than the length 
of its cdr.

(define list-
length  (lambda (lst)    (if (null? lst)      0|     (+ 1 (list-
length (cdr lst))))))



 

The procedures nth-elt and list-length do not check whether their arguments are of the 
expected type. Programs such as this that fail to check that their input is properly formed are 
fragile. (Users think a program is broken if it behaves badly, even when it is being used 
improperly.) It is generally better to write robust programs that thoroughly check their arguments, 
but robust programs are often much more complicated.

The specification of a procedure should include the assumptions the procedure may make about its 
input, and what kinds of behavior are permitted if these assumptions fail. If a procedure is always 
called in a context that causes these assumptions to be satisfied, it is wasteful (and at worst 
impossible) for the procedure to check its input. If the context in which the procedure will be 
called is unknown, then a procedure that does not check its arguments may fail in unexpected and 
unwelcome ways.

As we are concerned in this book with concisely conveying ideas, rather than providing general 
purpose tools, many of our programs are fragile. Even when programs are written solely to test 
ideas, some error checking may be wise to facilitate debugging.

Exercise 1.6 [ ] What happens if nth-elt and list-length are passed symbols when a list is 
expected? What is the behavior of list-ref and length in such cases? Write robust versions of 
nth-elt and list-length.

Exercise 1.7 [ ] The error message from nth-elt is uninformative. Rewrite nth-elt so that it 
produces a more informative error message, such as "(a b c) does not have an element 4." Hint: use 
letrec to create a local recursive procedure that does the real work.

1.2.2 Some Important Examples

In this section, we present some simple recursive procedures that will be used as examples later in 
this book. As in previous examples, they are defined so that (1) the structure of a program reflects 
the structure of its data and (2) recursive calls are employed at points where recursion is used in 
the set's inductive definition.

remove-first

The first procedure is remove-first, which takes two arguments: a symbol, s, and a list of 
symbols, los. It returns a list with the same elements arranged in the same order as los, except 
that the first occurrence of the symbol s is removed. If there is no occurrence of s in los, then 
los is returned.



 

> (remove-first 'a '(a b c))(b c)> (remove-first 'b '(e f g))(e f g)
> (remove-first 'a4 '(c1 a4 c1 a4))(c1 c1 a4)> (remove-first 'x '())()

Before we start on the program, we must complete the problem specification by defining the set 
<list-of-symbols>. Unlike the s-lists introduced in the last section, these lists of symbols do not 
contain sublists.

A list of symbols is either the empty list or a list whose car is a symbol and whose cdr is a list of 
symbols. If the list is empty, there are no occurrences of s to remove, so the answer is the empty 
list.

(define remove-
first  (lambda (s los)    (if (null? los)      '()      ...)))

If los is non-empty, is there some case where we can determine the answer immediately? If los 
= (s s1 . . . sn-1), the first occurrence of s is as the first element of los. So the result of removing 
it is just (s1 . . . sn-1).

If the first element of los is not s, say los = (s0 s1 . . . sn-1), then we know that s0 is not the first 
occurrence of s. Therefore the first element of the answer must be s0. Furthermore, the first 
occurrence of s in los must be its first occurrence in (s1 . . . sn-1). So the rest of the answer must 
be the result of removing the first occurrence of s from the cdr of los. Since the cdr of los is 
shorter than los, we may recursively call remove-first to remove



 

s from the cdr of los. Thus the answer may be obtained by using (cons (car los) (remove-first s (cdr los))). With this, the complete definition of remove-first 
follows.

(define remove-first  (lambda (s los)    (if (null? los)      '()      (if (eqv? (car los) s)        (cdr los)|       (cons (car los) (remove-
first s (cdr los)))))))

Exercise 1.8 [ ] In the definition of remove-first, if the inner if's alternative (cons ...) were replaced by (remove-first s (cdr los)), what function would the resulting procedure 
compute?

remove

The second procedure is remove, defined over symbols and lists of symbols. It is similar to remove-first, but it removes all occurrences of a given symbol from a list of symbols, 
not just the first.

> (remove 'a4 '(c1 a4 d1 a4))(c1 d1)

Since remove-first and remove work on the same input, their structure is similar. If the list los is empty, there are no occurrences to remove, so the answer is again the empty list. 
If los is non-empty, there are again two cases to consider. If the first element of los is not s, the answer is obtained as in remove-first.

(define remove  (lambda (s los)    (if (null? los)      '()      (if (eqv? (car los) s)        ...        (cons (car los) (remove s (cdr los)))))))

If the first element of los is the same as s, certainly the first element is not to be part of the result. But we are not quite done: all the occurrences of s must still be removed from the cdr 
of los. Once again this may be accomplished by invoking remove recursively on the cdr of los.



 

(define remove  (lambda (s los)    (if (null? los)      '()      (if (eqv? (car los) s)|       (remove s (cdr los))        (cons (car los) (remove s (cdr los)))))))

Exercise 1.9 [ ] In the definition of remove, if the inner if's alternative (cons ...) were replaced by (remove s (cdr los)), what function would the resulting procedure compute?

subst

The third of our examples is subst. It takes three arguments: two symbols, new and old, and an s-list, slist. All elements of slist are examined, and a new list is returned that is similar to slist but 
with all occurrences of old replaced by instances of new.

> (subst 'a 'b '((b c) (b () d)))((a c) (a () d))

Since subst is defined over s-lists, its organization reflects the definition of s-lists

First we rewrite the grammar to eliminate the use of the Kleene star:

This example is more complex than our previous ones because the grammar for its input contains two nonterminals, <s-list> and <symbol-expression>. Our follow-the-grammar pattern says we should have 
two procedures, one for dealing with <s-list> and one for dealing with <symbol-expression>:

(define subst  (lambda (new old slist)    ...))(define subst-in-symbol-expression  (lambda (new old se)    ...))



 

Let us first work on subst. If the list is empty, there are no occurrences of old to replace.

(define subst  (lambda (new old slist)    (if (null? slist)      '()      ...)))

If slist is non-empty, its car is a member of <symbol-expression> and its cdr is another s-list. In this 
case, the answer should be a list whose car is the result of changing old to new in the car of slist, 
and whose cdr is the result of changing old to new in the cdr of slist. Since the car of slist is an 
element of <symbol-expression>, we solve the subproblem for the car using subst-in-symbol-
expression. Since the cdr of slist is an element of <s-list>, we recur on the cdr using subst:

Now we can move on to subst-in-symbol-expression. From the grammar, we know that the 
symbol expression se is either a symbol or an s-list. If it is a symbol, we need to ask whether it is the 
same as the symbol old. If it is, the answer is new; if it is some other symbol, the answer is the same 
as se. If se is an s-list, then we can recur using subst to find the answer.

Since we have strictly followed the BNF definition of <s-list> and <symbol-expression>, this recursion 
is guaranteed to halt. Observe that subst and subst-in-symbol-expression call each other 
recursively. Such procedures are said to be mutually recursive.

The decomposition of subst into two procedures, one for each syntactic category, is an important 
technique. It allows us to think about one syntactic category at a time, which is important in more 
complicated situations.



 

Exercise 1.10 [ ] In the last line of subst-in-symbol-expression, the recursion is on se 
and not a smaller substructure. Why is the recursion guaranteed to halt?Exercise 1.11 [ ] Eliminate the one 
call to subst-in-symbol-expression in subst by replacing it by its definition and 
simplifying the resulting procedure. The result will be a version of subst that does not need subst-in-
symbol-expression. This technique is called inlining, and is used by optimizing compilers.Exercise 
1.12 [ ] In our example, we began by eliminating the Kleene star in the grammar for <s-list>. When a 
production is expressed using Kleene star, often the recursion can be expressed using map. Write subst 
following the original grammar by using map.

notate-depth

Our next example is notate-depth. This procedure takes an s-list and produces a list similar to 
the original, except that each symbol is replaced by a list containing the symbol and a number 
equal to the depth at which the symbol appears in the original s-list. A symbol appearing at the top 
level of the s-list is at depth 0; a symbol appearing in an immediate sublist is at depth 1, etc. For 
example,

> (notate-depth '(a (b () c) ((d)) e))
((a 0) ((b 1) () (c 1)) (((d 2))) (e 0))

To solve this problem, we need to distinguish the s-list that is the input from an s-list that may 
appear as a sublist. Thus our grammar will be

We will have three procedures: notate-depth, notate-depth-in-s-list and 
notate-depth-in-symbol-expression, corresponding to the three nonterminals. The 
latter two procedures will take an additional parameter d that indicates what depth we are at. 
Initially, we are at depth 0.

(define notate-depth  (lambda (slist)    (notate-depth-in-s-list slist 0)))
(define notate-depth-in-s-list  (lambda (slist d)    ...))



 

(define notate-depth-in-symbol-expression  (lambda (se d)    ...))

To notate an s-list at depth d, we simply notate each of its elements:

To notate a symbol-expression se at depth d, we first ask if se is a symbol. If so, we can return 
(list se d). If se is instead a list, then we need to notate its elements. But those elements are 
now at depth d+1:

(define notate-depth-in-symbol-
expression  (lambda (se d)    (if (symbol? se)      (list se d)      (notate-
depth-in-s-list se (+ d 1)))))

This technique of passing additional arguments to keep track of the context in which a procedure is 
invoked is extremely useful. Such arguments are called inherited attributes. Our subst example 
uses a rudimentary form of this technique by passing the extra parameters old and new, but those 
parameters do not change as the procedure recurs.

Exercise 1.13 [ ] Rewrite the grammar for <s-list> to use Kleene star, and rewrite notate-depth-
in-s-list using map.

1.2.3 Other Patterns of Recursion

Sometimes the grammar for the input may not provide sufficient structure for the program. As an 
example, we consider the problem of summing all the values in a vector.

If we were summing the values in a list, we could follow the grammar to recur on the cdr of the list 
to get a procedure like



 

(define list-
sum  (lambda (lon)    (if (null? lon)      0      (+ (car lon)         (list-
sum (cdr lon))))))

But it is not possible to proceed in this way with vectors, because they do not decompose as readily.

Sometimes the best way to solve a problem is to solve a more general problem and use it to solve the original 
problem as a special case. For the vector sum problem, since we cannot decompose vectors, we generalize the 
problem to compute the sum of part of the vector. We define partial-vector-sum, which takes a vector 
of numbers, von, and a number, n, and returns the sum of the first n values in von.

(define partial-vector-sum  (lambda (von n)    (if (zero? n)      0      (+ (vector-
ref von (- n 1))         (partial-vector-sum von (- n 1))))))

Since n decreases steadily to zero, a proof of correctness for this program would proceed by induction on n. It 
is now a simple matter to solve our original problem

(define vector-sum  (lambda (von)    (partial-vector-sum von (vector-length von))))

Observe that von does not change. We can take advantage of this by rewriting the program using letrec:

(define vector-sum  (lambda (von)    (letrec      ((partial-
sum         (lambda (n)           (if (zero? n)             0             (+ (vector-
ref von (- n 1))                (partial-sum (- n 1)))))))      (partial-sum (vector-
length von)))))



 

Exercise 1.14 [ ] Given the assumption 0 ≤ n < length(von), prove that partial-vector-sum 
is correct.

There are many other situations in which it may be helpful or necessary to introduce auxiliary 
variables or procedures to solve a problem. Always feel free to do so.

1.2.4 Exercises

Getting the knack of writing recursive programs involves practice. Thus we conclude this section 
with a number of exercises.

Exercise 1.15 [ ] Define, test, and debug the following procedures. Assume that s is any symbol, n is a 
nonnegative integer, lst is a list, v is a vector, los is a list of symbols, vos is a vector of symbols, 
slist is an s-list, and x is any object; and similarly s1 is a symbol, los2 is a list of symbols, x1 is an 
object, etc. Also assume that pred is a predicate, that is, a procedure that takes any Scheme object and 
returns either #t or #f. Make no other assumptions about the data unless further restrictions are given as part 
of a particular problem. For these exercises, there is no need to check that the input matches the description; 
for each procedure, assume that its input values are members of the specified sets.

To test these procedures, at the very minimum try all of the given examples. Also use other examples to test 
these procedures, since the given examples are not adequate to reveal all possible errors.

1. (duple n x) returns a list containing n copies of x.

> (duple 2 3)(3 3)> (duple 4 '(ho ho))((ho ho) (ho ho) (ho ho) (ho ho))
> (duple 0 '(blah))()

2. (invert lst), where lst is a list of 2-lists (lists of length two), returns a list with each 2-
list reversed.

> (invert '((a 1) (a 2) (b 1) (b 2)))((1 a) (2 a) (1 b) (2 b))

3. (filter-in pred lst) returns the list of those elements in lst that satisfy the predicate 
pred.

> (filter-in number? '(a 2 (1 3) b 7))(2 7)> (filter-
in symbol? '(a (b c) 17 foo))(a foo)



 

4. (every? pred lst) returns #f if any element of lst fails to satisfy pred, and returns 
#t otherwise.

> (every? number? '(a b c 3 e))#f> (every? number? '(1 2 3 5 4))#t

5. (exists? pred lst) returns #t if any element of lst satisfies pred, and returns #f 
otherwise.

> (exists? number? '(a b c 3 e))#t> (exists? number? '(a b c d e))#f

6. (vector-index pred v) returns the zero-based index of the first element of v that 
satisfies the predicate pred, or #f if no element of v satisfies pred.

> (vector-index (lambda (x) (eqv? x 'c)) '# (a b c d))2> (vector-
ref '# (a b c)    (vector-index (lambda (x) (eqv? x 'b)) '# (a b c)))b

7. (list-set lst n x) returns a list like lst, except that the n-th element, using zero-
based indexing, is x.

> (list-set '(a b c d) 2 '(1 2))(a b (1 2) d)> (list-ref (list-
set '(a b c d) 3 '(1 5 10)) 3)(1 5 10)

8. (product los1 los2) returns a list of 2-lists that represents the Cartesian product of 
los1 and los2. The 2-lists may appear in any order.

> (product '(a b c) '(x y))((a x) (a y) (b x) (b y) (c x) (c y))

9. (down lst) wraps parentheses around each top-level element of lst.

> (down '(1 2 3))((1) (2) (3))> (down '((a) (fine) (idea)))
(((a)) ((fine)) ((idea)))> (down '(a (more (complicated)) object))
((a) ((more (complicated))) (object))

10. (vector-append-list v lst) returns a new vector with the elements of lst attached 
to the end of v. Do this without using vector->list, list->vector, and append.

> (vector-append-list '# (1 2 3) '(4 5))#(1 2 3 4 5)



 

Exercise 1.16 [ ]

1. (up lst) removes a pair of parentheses from each top-level element of lst. If a top-level 
element is not a list, it is included in the result, as is. The value of (up (down lst)) is 
equivalent to lst, but (down (up lst)) is not necessarily lst.

> (up '((1 2) (3 4)))(1 2 3 4)> (up '((x (y)) z))(x (y) z)

2. (swapper s1 s2 slist) returns a list the same as slist, but with all occurrences of s1 
replaced by s2 and all occurrences of s2 replaced by s1.

> (swapper 'a 'd '(a b c d))(d b c a)> (swapper 'a 'd '(a d () c d))
(d a () c a)> (swapper 'x 'y '((x) y (z (x))))((y) x (z (y)))

3. (count-occurrences s slist) returns the number of occurrences of s in slist.

> (count-occurrences 'x '((f x) y (((x z) x))))3> (count-
occurrences 'x '((f x) y (((x z) () x))))3> (count-
occurrences 'w '((f x) y (((x z) x))))0

4. (flatten slist) returns a list of the symbols contained in slist in the order in which 
they occur when slist is printed. Intuitively, flatten removes all the inner parentheses from 
its argument.

> (flatten '(a b c))(a b c)> (flatten '((a) () (b ()) () (c)))(a b c)
> (flatten '((a b) c (((d)) e)))(a b c d e)> (flatten '(a b (() (c))))(a b c)

5. (merge lon1 lon2), where lon1 and lon2 are lists of numbers that are sorted in 
ascending order, returns a sorted list of all the numbers in lon1 and lon2.

> (merge '(1 4) '(1 2 8))(1 1 2 4 8)> (merge '(35 62 81 90 91) '(3 83 85 90))
(3 35 62 81 83 85 90 90 91)



 

Exercise 1.17 [ ]

1. (path n bst), where n is a number and bst is a binary search tree that contains the number n, returns a list of lefts and rights showing how to 
find the node containing n. If n is found at the root, it returns the empty list.

> (path 17 '(14 (7 () (12 () ()))                (26 (20 (17 () ())                        ())                    (31 () ()))))
(right left left)

2. (sort lon) returns a list of the elements of lon in increasing order.

> (sort '(8 2 5 2 3))(2 2 3 5 8)

3. (sort predicate lon) returns a list of elements sorted by the predicate.

> (sort < '(8 2 5 2 3))(2 2 3 5 8)> (sort > '(8 2 5 2 3))(8 5 3 2 2)

Exercise 1.18 [ ] This exercise has three parts. Work them in order.

1. Define the procedure compose such that (compose p1 p2), where p1 and p2 are procedures of one argument, returns the composition of these 
procedures, specified by this equation:

((compose p1 p2) x) = (p1 (p2 x))> ((compose car cdr) '(a b c d))b

2. (car&cdr s slist errvalue) returns an expression that, when evaluated, produces the code for a procedure that takes a list with the same 
structure as slist and returns the value in the same position as the leftmost occurrence of s in slist. If s does not occur in slist, then errvalue is 
returned. Do this so that it generates procedure compositions.

> (car&cdr 'a '(a b c) 'fail)car> (car&cdr 'c '(a b c) 'fail)(compose car (compose cdr cdr))
> (car&cdr 'dog '(cat lion (fish dog ()) pig) 'fail)(compose car (compose cdr (compose car (compose cdr cdr))))
> (car&cdr 'a '(b c) 'fail)fail

3. Define car&cdr2, which behaves like car&cdr, but does not use compose in its output.



 

1.3 Scoping and Binding of Variables

We now apply these ideas to a group of important programming language concepts: the scoping 
and binding of variables.

In most programming languages, variables may appear in two different ways: as references or as 
declarations. A variable reference is a use of the variable. For example, in

(f x y)

all the variables, f, x, and y, appear as references. However, in

(lambda (x) ...)

or

(let ((x ...)) ...)

the occurrence of x is a declaration: it introduces the variable as a name for some value. In the 
lambda expression, the value of the variable will be supplied when the procedure is called; in the 
let expression the value of the variable is obtained from the value of the expression in the first 
". . .".

We sometimes call the value named by a variable its denotation. The denotation must come from 
some declaration, and we say that the variable reference is bound by that declaration, or that it 
refers to that declaration.

Declarations in most programming languages have a limited scope, so that the same variable name 
may be used for different purposes in different parts of a program. For example, we have 
repeatedly used lst as a formal parameter, and in each case its scope was limited to the body of 
the corresponding lambda expression.

Every programming language must have some rules to determine the declaration to which each 
variable reference refers. These rules are typically called binding rules.

In Scheme, as in most other languages, the relation between a variable reference and the 
declaration to which it refers is a static property: it can be determined by analyzing the text of a 
program alone, without knowing the actual values to which the variable is bound. We say that 
such languages are statically scoped. By contrast, in some languages, the declaration to which a 
variable reference refers cannot be determined until the program is executed; such properties are 
called dynamic.



It is important to know whether a property is static, because static properties can be analyzed by a 
compiler to detect errors before run time and to



 

improve the efficiency of object code. They are also usually easier for programmers to analyze, 
and this makes programs easier to understand.

In this section we study a number of static properties related to variable binding. We do this in the 
simplest possible context: the language of lambda calculus expressions, which we defined in 
section 1.1. Recall that this language consists only of variable references, lambda expressions 
with a single formal parameter, and procedure calls. It is defined by the grammar

The binding rule for lambda calculus expressions is the following:

Definition 1.3.1 (Binding Rule for Lambda Calculus Expressions)

In (lambda (<identifier>) <expression>), the occurrence of <identifier> is a declaration that 
binds all occurrences of that variable in <expression> unless some intervening declaration of the 
same variable occurs.

We spend the rest of this section exploring the consequences of this definition.

1.3.1 Free and Bound Variables

The first question one can ask about a variable and an expression is whether the variable occurs 
free or bound in that expression.

Definition 1.3.2 (Occurs Free, Occurs Bound)

A variable x occurs free in E if and only if there is some use of x in E that is not bound by any 
declaration of x in E.

A variable x occurs bound in an expression E if and only if there is some use of x in E that is 
bound by a declaration of x in E.

Thus in

x occurs bound, since the second occurrence of x is a reference bound by the first occurrence of x 
(a declaration). Similarly, y occurs free because its sole occurrence in this expression is not bound 



by any declaration of y.



 

A variable reference that is free in one context, such as (*), may be bound in a larger surrounding 
context. For example, if (*) were embedded in the body of a lambda calculus expression with 
formal parameter y, as in

then the reference to y on the second line is bound by the declaration of the formal parameter y on 
the first line.

The value of an expression depends only on the values associated with the variables that occur 
free within the expression. The context that surrounds the expression must provide these values. 
For example, the value of the expression ((lambda (x) x) y) on the second line of (**) 
depends only on the denotation of its single free variable y. The denotation of y comes from its 
associated declaration, the declaration of the formal parameter y on the first line. Hence the value 
of y will come from the argument to the procedure (**).

Conversely, the value of an expression is independent of the bindings of variables that do not 
occur free in the expression. For example, the value of (*) is independent of the denotation of x at 
the time that (*) is evaluated. By the time the free occurrence of x in the body of (lambda (x) 
x) is evaluated, it will have a new binding (in (*), the value associated with y).

Therefore, the meaning of an expression with no free variables is fixed. For instance, the meaning 
of (lambda (x) x) is always the same: it is the identity function that returns whatever value it 
is passed. Other lambda calculus expressions without free variables also have fixed meanings. For 
example, the value of

(lambda (f)  (lambda (x)    (f x)))

is a procedure that takes a procedure, f, and returns a procedure that takes a value x, applies f to 
it, and returns the result. Lambda calculus expressions without free variables are called 
combinators. Many combinators, such as the identity function and the application combinator 
above, are useful programming tools.

We formulated definition 1.3.2 for any programming language; for the language of lambda 
calculus expressions, we can make a much more specific definition.



 

Definition 1.3.3 (Occurs Free, Occurs Bound in Lambda Calculus Expressions)

A variable x occurs free in a lambda calculus expression E if and only if

1. E is a variable reference and E is the same as x; or

2. E is of the form (lambda (y) E'), where y is different from x and x occurs free in E'; or

3. E is of the form (E1 E2) and x occurs free in E1 or E2.

A variable x occurs bound in a lambda calculus expression E if and only if

1. E is of the form (lambda (y) E'), where x occurs bound in E' or x and y are the same variable 
and y occurs free in E'; or

2. E is of the form (E1 E2) and x occurs bound in E1 or E2.

This definition says that x can occur bound in E only if E is a lambda- expression or an 
application; hence no variable occurs bound in an expression consisting of just a single variable.

From this definition, we can easily write procedures occurs-free? and occurs-bound? 
that take a variable and an expression and determine whether the variable occurs free or bound in 
the expression (figure 1.1). In each one we do a case analysis of the expression to determine which 
clause of the definition applies, and recur when the definition tells us to do so.

The procedures occurs-free? and occurs-bound? are not as readable as they might be. It 
is hard to tell, for example, that (caadr exp) refers to the declaration of a variable in a 
lambda expression, or that (caddr exp) refers to its body. We show how to improve this 
situation considerably in section 2.2.2.

Exercise 1.19 [ ] Write a procedure free-vars that takes a list structure representing an expression in 
the lambda calculus syntax given above and returns a set (a list without duplicates) of all the variables that 
occur free in the expression. Similarly, write a procedure bound-vars that returns a set of all the 
variables that occur bound in its argument.

Exercise 1.20 [ ] Give an example of a lambda calculus expression in which a variable occurs free but which 
has a value that is independent of the value of the free variable.

Exercise 1.21 [ ] Give an example of a lambda calculus expression in which the same variable occurs both 
bound and free.



 

(define occurs-
free?  (lambda (var exp)    (cond      ((symbol? exp) (eqv? exp var))      ((eqv? (car exp) 'lambda)       (and (not (eqv? (caadr exp) var))            (occurs-
free? var (caddr exp))))      (else (or (occurs-free? var (car exp))                (occurs-free? var (cadr exp)))))))(define occurs-
bound?  (lambda (var exp)    (cond      ((symbol? exp) #f)      ((eqv? (car exp) 'lambda)       (or (occurs-
bound? var (caddr exp))           (and (eqv? (caadr exp) var)                (occurs-free? var (caddr exp)))))      (else (or (occurs-
bound? var (car exp))                (occurs-bound? var (cadr exp)))))))

Figure 1.1 occurs-free? and occurs-bound?

Exercise 1.22 [ ] Scheme lambda expressions may have any number of formal parameters, and Scheme procedure calls may have any number of operands. Modify the formal definitions of occurs free and occurs bound to allow 
lambda expressions with any number of formal parameters and procedure calls with any number of operands. Then modify the procedures occurs-free? and occurs-bound? to follow these new definitions.

Exercise 1.23 [ ] Extend the formal definitions of occurs free and occurs bound to include if expressions.

Exercise 1.24 [ ] Extend the formal definitions of occurs free and occurs bound to include Scheme let and let* expressions.

Exercise 1.25 [ ] Extend the formal definitions of occurs free and occurs bound to include Scheme quotations (expressions of the form (quote <datum>)).

Exercise 1.26 [ ] Extend the formal definitions of occurs free and occurs bound to include Scheme assignment (set !) expressions.



 

1.3.2 Scope and Lexical Address.

The next problem is to associate with each variable reference the declaration to which it refers. It turns out to be easier to think about the reverse problem: given a declaration, which variable references refer to it?

Typically, the binding rules of a language associate with each declaration of a variable a region of the program within which the declaration is effective. For example, in the Scheme expression

(lambda (x) ...)

the region for x is the body of the lambda expression, and in a top-level definition

(define x ...)

the region is the whole program.

This is not the entire story, however, because many modern languages, including Scheme, allow regions to be nested within each other, as when one lambda expression appears in the body of another. Such languages are said to be block-structured, and the regions are sometimes called blocks.

For example, in Scheme the body of the lambda expression above might contain another declaration of x. In this case the inner declaration takes precedence over the outer one. Consider

> (define x                               ; call this x1    (lambda (x)                           ; call this x2      (map        (lambda (x)                       ; call this x3          (+ x 1))                        ; refers to x3        x)))                              ; refers to x2> (x '(1 2 3))                            ; refers to x1
(2 3 4)

Here the expression (+ x 1) is within the region of all three declarations of x. It therefore takes its binding from the innermost declaration of x, the one on the fourth line. Block-structured languages whose scope rules work in this way are said to use lexical binding.

We define the scope of a variable declaration to be the text within which references to the variable refer to the declaration. Thus the scope of a declaration is the region of text associated with the declaration, excluding any inner regions associated with declarations that use the same variable name. We say that the inner declaration of x shadows the outer declarations of x, or



 

that the inner declaration creates a hole in the scope of the outer one. Alternatively, we may speak of the declarations that 
are visible at the point of a variable reference, meaning those that contain the variable reference within their scope.

The declaration of a variable v has a scope that includes all references to v that occur free in the region associated with 
the declaration. Those references to v that occur bound in the region associated with its declaration are shadowed by 
inner declarations.

Applying this to the preceding example, the region of the x declared on the first line is the read-eval-print loop's top 
level, which includes the body of the definition: however, its scope does not include the body of the defined procedure, 
since x does not occur free in the procedure (lambda (x) ...). The scope of the formal parameter x in the fourth 
line is the lambda expression's body, (+ x 1). This formal parameter creates a hole in the scope of the formal 
parameter x in the second line. The scope of the x in the second line includes the reference to x as the second argument 
to map, but not the reference to x as the first argument to +. The inner declarations of x shadow the outer declarations of 
x.

In a language with lexical binding, there is a simple algorithm for determining the declaration to which a variable 
reference refers. Search the regions enclosing the reference, starting with the innermost. As each successively larger 
region is encountered, check whether a declaration of the given variable is associated with the block. If one is found, it is 
the declaration of the variable. If not, proceed to the next enclosing region. If the outer-most (top-level or global) region 
is reached and no declaration is found, the variable reference is free.

Exercise 1.27 [ ] In the following expressions, draw an arrow from each variable reference to its associated formal parameter 
declaration.

(lambda (x)  (lambda (y)    ((lambda (x)       (x y))     x)))
(lambda (z)  ((lambda (a b c)     (a (lambda (a) (+ a c)) b))   (lambda (f x)     (f (z x)))))



 

Figure 1.2 Contour diagrams

Exercise 1.28 [ ] Repeat the above exercise with programs written in a block-structured language, other than 
Scheme.

It is sometimes more helpful to picture the borders of regions, rather than the interiors of regions. 
These borders are called contours. For example, the contours in the preceding exercise can be 
drawn as in figure 1.2.

Execution of the scoping algorithm may then be viewed as a journey outward from a variable 
reference. In this journey a number of contours may be crossed before arriving at the associated 
declaration. The number of contours crossed is called the lexical (or static) depth of the variable 
reference. It is customary to use "zero-based indexing," thereby not counting the last contour 
crossed. For example, in

(lambda (x y)  ((lambda (a)     (x (a y)))   x))

the reference to x on the last line and the reference to a have lexical depth zero, while the 
references to x and y in the third line have lexical depth one.

The declarations associated with a region may be numbered in the order of their appearance in the 
text. Each variable reference may then be associated



 

with two numbers: its lexical depth and its position, again using zero-based indexing, of its declaration 
in the declaring contour (its declaration position). Taken together, these two numbers are the variable 
reference's lexical address.

To illustrate lexical addresses, we may replace every variable reference v in an expression by

(v:d p)

where d is its lexical depth and p is its declaration position. The above example then becomes

(lambda (x y)  ((lambda (a)     ((x : 1 0) ((a : 0 0) (y : 1 1))))   (x : 0 0)))

Since the lexical address completely specifies each variable reference, variable names are then 
superfluous! Thus variable references could be replaced by expressions of the form (: d p), and formal 
parameter lists could be replaced by their length, as in

(lambda 2  ((lambda 1     ((: 1 0) ((: 0 0) (: 1 1))))   (: 0 0)))

Names for lexically-bound variables are certainly a great help in writing and understanding programs, 
but they are not necessary in executing programs.

Exercise 1.29 [ ] What is wrong with the following lexical-address expression?

(lambda (a)  (lambda (a)    (a : 1 0)))

Exercise 1.30 [ ] Write a Scheme expression that is equivalent to the following lexical-address expression from 
which variable names have been removed.

(lambda 1  (lambda 1    (: 1 0)))

Compilers routinely calculate the lexical address of each variable reference. Once this has been done, 
the variable names may be discarded unless they are required to provide debugging information.



 

Exercise 1.31 [ ] Consider the subset of Scheme specified by the BNF rules

Write a procedure lexical-address that takes any expression and returns the expression with every variable reference v replaced by a list (v : d p), as above. If the variable reference v is free, produce the list (v free) instead.

> (lexical-
address '(lambda (a b c)                      (if (eqv? b c)                        ((lambda (c)                           (cons a c))                         a)                        b)))
(lambda (a b c)  (if ((eqv? free) (b : 0 1) (c : 0 2))    ((lambda (c)       ((cons free) (a : 1 0) (c : 0 0)))     (a : 0 0))    (b : 0 1)))

Exercise 1.32 [ ] Write the procedure un-lexical-address, which takes lexical-address expressions with formal parameter lists and with variable references of the form (: d p), or (v free) and returns an equivalent expression formed by substituting standard 
variable references for the lexical-address information, or #f if no such expression exists.

> (un-lexical-address '(lambda (a)                         (lambda (b c)                           ((: 1 0) (: 0 0) (: 0 1)))))(lambda (a) (lambda (b c) (a b c)))> (un-lexical-
address '(lambda (a) (lambda (a) (: 1 0))))#f

Exercise 1.33 [ ] Some languages do not allow an inner declaration to declare a variable already declared in an outer declaration. Write a procedure that takes a lambda calculus expression and checks to see if it contains such a redeclaration.

Further Reading

Scheme was introduced in (Sussman & Steele, 1975). Its development is recorded in (Steele & Sussman, 1978; Clinger et al., 1985; Rees et al., 1986; Clinger et al., 1991; Kelsey et al., 1998). The standard definitions of Scheme



 

are provided by the IEEE standard (1991) and the Revised5 Report on the Algorithmic Language 
Scheme (Kelsey et al., 1998). (Dybvig, 1987; 1996) provides a short introduction to Scheme that 
includes a number of insightful examples.

Those new to recursive programming and symbolic computation might look at The Little Schemer 
(Friedman & Felleisen, 1996), or The Little MLer (Felleisen & Friedman, 1996), or for the more 
historically-minded, The Little LISPer (Friedman, 1974).

The lambda calculus was introduced in (Church, 1941) to study mathematical logic. Introductory 
treatments of the lambda calculus may be found in (Hankin, 1994), (Peyton Jones, 1987), or (Stoy, 
1977). (Barendregt, 1981; 1991) provides an encyclopedic reference.



 

2 Data Abstraction

2.1 Specifying Data via Interfaces

Every time we decide to represent a certain set of quantities in a particular way, we are defining a 
new data type: the data type whose values are those representations and whose operations are the 
procedures that manipulate those entities.

The representation of these entities is often complex, so we do not want to be concerned with their 
details when we can avoid them. We may also decide to change the representation of the data. The 
most efficient representation is often a lot more difficult to implement, so we may wish to develop 
a simple implementation first and only change to a more efficient representation if it proves 
critical to the overall performance of a system. If we decide to change the representation of some 
data for any reason, we must be able to locate all parts of a program that are dependent on the 
representation. This is accomplished using the technique of data abstraction.

Data abstraction divides a data type into two pieces: an interface and an implementation. The 
interface tells us what the data of the type represents, what the operations on the data are, and what 
properties these operations may be relied on to have. The implementation provides a specific 
representation of the data and code for the operations that makes use of the specific data 
representation.

A data type that is abstract in this way is said to be an abstract data type. The rest of the program, 
the client of the data type, manipulates the new data only through the operations specified in the 
interface. Thus if we wish to change the representation of the data, all we must do is change the 
implementation of the operations in the interface.



 

This is a familiar idea: most of the time, we don't care how integers are actually represented inside 
the machine. Our only concern is that we can perform the arithmetic operations reliably. Similarly, 
a file descriptor in an operating system is a complex entity, but when we write programs we care 
only that we can invoke procedures that perform the open, close, read, and other typical operations 
on these files. The only time we need to worry about the representation of file descriptors is when 
we are modifying the implementation of a file system. When the client code does not rely on the 
representation of the values in the data type, manipulating them only through the procedures in the 
interface, we say that the code is representation-independent.

All the knowledge about how the data is represented must therefore reside in the code of the 
implementation. The most important part of an implementation is the specification of how the data 

is represented. We use the notation  for "the representation of data v".

To make this clearer, let us consider a simple example: the data type of the nonnegative integers. 
The data to be represented are the nonnegative integers. The interface is to consist of four entities: 
a constant zero and three procedures, iszero?, succ, and pred. Of course, not just any 
value will be acceptable for zero, nor will any procedure be acceptable as an implementation of 
iszero?, succ, or pred. We can specify the intended behavior of these procedures as 
follows:

This specification does not dictate how these nonnegative integers are to be represented. It 
requires only that these procedures conspire to produce the specified behavior. Thus, zero must 
be bound to the representation of 0. The procedure succ, given the representation of the integer n, 
must return the representation of the integer n + 1, and so on. The specification says nothing about 
(pred zero), so under this specification any behavior would be acceptable.

We can now write client programs that manipulate nonnegative integers, and we are guaranteed 
that they will get correct answers, no matter what representation is in use. For example,



 

(define plus  (lambda (X Y)    (if (iszero? X)      Y      (succ (plus (pred X) Y)))))

will satisfy , no matter what implementation of the nonnegative integers we use.

This would all be trivial if we did not have choices about the representation. Let us consider three possible 
representations:

1. Unary representation: In the unary representation, the nonnegative integer n is represented by a list of n 
#t's. Thus, 0 is represented by (), 1 is represented by (#t), 2 is represented by (#t #t), etc. We can 
define this representation inductively by:

In this representation, we can satisfy the specification by writing

(define zero '())(define iszero? null?)(define succ (lambda (n) (cons #t n)))
(define pred cdr)

2. Scheme number representation: In this representation, we simply use Scheme's internal representation of 
numbers (which might itself be quite complicated!). We let  be the Scheme integer n, and define the four 
required entities by

(define zero 0)(define iszero? zero?)(define succ (lambda (n) (+ n 1)))
(define pred (lambda (n) (- n 1)))

3. Bignum representation: In the bignum representation, numbers are represented in base N, for some large 
integer N. The representation becomes a list consisting of numbers between 0 and N − 1 (sometimes called 
bigits rather than digits). This representation makes it easy to represent integers



 

much larger than can be represented in a machine word. For our purposes, it is convenient to keep 
the list with least-significant bigit first. We can define the representation inductively by

So if N = 16, then  and , since 258 = 1 × 162 + 0 × 161 + 2 × 160.

Exercise 2.1 [ ] Implement the four required operations for bigits. Then use it to calculate the factorial of 10. 
How does the execution time vary as this argument changes? How does the execution time vary as the base 
changes? Explain why.

Exercise 2.2 [ ] Analyze each of these proposed representations critically. To what extent do they succeed 
or fail in satisfying the specification of the data type?

None of these implementations enforces data abstraction. There is nothing to prevent a client 
program from looking at the representation and determining whether it is a list or a Scheme 
integer. On the other hand, some languages provide direct support for data abstractions: they allow 
the programmer to create new interfaces and check that the new data is only manipulated through 
the procedures in the interface. If the representation of a type is hidden, so it cannot be exposed by 
any operation (including printing), the type is said to be opaque. Otherwise, it is said to be 
transparent.

Scheme does not provide a standard mechanism for creating new opaque types. Thus we settle for 
an intermediate level of abstraction: we will define interfaces and rely on the writer of the client 
program to be discreet and use only the procedures in the interfaces.

2.2 An Abstraction for Inductive Data Types

In chapter 1, we saw many examples of inductively defined sets of data. We will see many more 
such sets in the future, so it will be useful to have a standard interface for dealing with such data 
types. This interface is specified by the form define-datatype.

2.2.1 define-datatype and cases

Let us consider the definition of binary trees from section 1.1:



 

This grammar defines the elements of <bintree> as Scheme values. But this is a particular 
representation choice. What should the interface for this data type look like? To manipulate values 
of this data type we will need the following:

• constructors that allow us to build each kind of binary tree,

• a predicate that tests to see if a value is a representation of a binary tree, and

• some way of determining, given a binary tree, whether it is a leaf or an interior node, and of 
extracting its components.

In this section we introduce a tool for specifying such inductive data types. This tool also provides 
a standard representation for these data types, including a standard method for discriminating 
between the alternatives and extracting the data in them.

This tool is called define-datatype. Before we consider the general properties of this tool, 
we demonstrate its use by specifying the data type of binary trees:

(define-datatype bintree bintree?  (leaf-
node    (datum number?))  (interior-
node    (key symbol?)    (left bintree?)    (right bintree?)))

This says that a bintree is either

• a leaf-node consisting of a number called the datum of the bintree or

• an interior-node consisting of a key that is a symbol, a left that is a bintree, and a 
right that is also a bintree.

It creates a data type with the following interface:

• a 1-argument procedure, leaf-node, for constructing a leaf-node. This procedure tests its 
argument with number?; if the argument does not pass this test, an error is reported.

• a 3-argument procedure, interior-node, for building an interior-node. This procedure 
tests its first argument with symbol? and its second and third arguments with bintree? to 
ensure that they are appropriate values.



 

• a 1-argument predicate bintree? that when passed a leaf-node or an interior-node 
returns true. For all other arguments, it returns false.

In addition, a new form of case construct (illustrated presently) makes it possible to conveniently 
distinguish between the two types of nodes and extract their contents.

We need some terminology before describing define-datatype in general. An aggregate 
data type is one that contains values of other types, such as an array or record. An array element is 
selected using a numerical index, while a record element, called a field, is selected via a field name.

A union type is one whose values are of one or the other of multiple given types. For example, the 
type of integers might be viewed as the union of the type of even integers and the type of odd 
integers. Values of a discriminated union type contain a value of one of the union's types and a tag 
indicating which type the value belongs to.

Scheme values belong to a discriminated union of all the primitive types provided by the Scheme 
implementation (such as integer, character, pair, empty list, vector, procedure, and so on). For the 
purpose of reasoning about Scheme programs, we may invent other abstract unions. For example, 
a list is a union of just the empty list and pair types.

Inductively defined data types are conveniently represented as a discriminated union of record 
types, sometimes called variant records. Each record type is called a variant of the type. The 
define-datatype facility is an extension of Scheme that makes it easy to define and use 
variant records.

A define-datatype declaration, which can only appear at the top-level of a program, has the 
general form

(define-datatype type-name type-predicate-name    { (variant-name { (field-name 
predicate) }*)}*)

This creates a variant-record data type, named type-name. Each variant has a variant-name and 
zero or more fields, each with its own field-name and associated predicate. No two types may 
have the same name and no two variants, even those belonging to different types, may have the 
same name. Also, type names cannot be used as variant names. Each field predicate must be a 
Scheme predicate: a procedure of one argument that is used to assure that the field's values are 
valid.

For each variant a new procedure is created that is used to create data values belonging to that 
variant. These procedures are called constructors and are named after their variants. If there are n 
fields in a variant, its constructor takes n arguments, tests each of them with the associated 
predicate, and



 

returns a new value of the given variant with the i-th field containing the i-th argument value.

The type-predicate-name is bound to a predicate. This predicate determines if its argument is a value belonging to the named type.

A record can be defined as a data type with a single variant. To distinguish data types with only one variant, we use a naming convention. When there is a single variant, the 
constructor is named a-type-name or an-type-name; otherwise, the constructors have names like variant-description -type-name.

Data types built by define-datatype may be mutually recursive. For example, consider the grammar for <s-list> from section 1.1:

The data in an s-list could be represented by the data type s-list defined by:

(define-datatype s-list s-list?  (empty-s-list)  (non-empty-s-list    (first symbol-exp?)    (rest s-list?)))(define-datatype symbol-
exp symbol-exp?  (symbol-symbol-exp    (data symbol?))  (s-list-symbol-exp    (data s-list?)))

The data type s-list gives its own representation of lists by using (empty-s-list) and non-empty-s-list in place of () and cons; if we wanted to specify 
that Scheme lists be used instead, we could have written

(define-datatype s-list s-list?  (an-s-list    (data (list-of symbol-exp?))))(define list-
of  (lambda (pred)    (lambda (val)      (or (null? val)          (and (pair? val)               (pred (car val))               ((list-
of pred) (cdr val)))))))



 

Here (list-of pred) builds a predicate that tests to see if its argument is a list, and that each of 
its elements satisfies pred.

Exercise 2.3 [ ] Implement vector-of, which is like list-of, but works for vectors instead of lists. 
Do this without using vector->list.

We use the form cases to determine the variant to which an object of a data type belongs, and to 
extract its components. To illustrate this form, consider again the set of binary trees, defined by

(define-datatype bintree bintree?  (leaf-
node    (datum number?))  (interior-
node    (key symbol?)    (left bintree?)    (right bintree?)))

We wish to find the sum of the integers in the leaves of such a tree. We can do this with cases 
by writing:

(define leaf-sum  (lambda (tree)    (cases bintree tree      (leaf-
node (datum) datum)      (interior-node (key left right)        (+ (leaf-
sum left) (leaf-sum right))))))

The procedure leaf-sum takes a bintree that it refers to as tree. The (cases 
bintree ...) expression branches depending upon which variant of bintree the value 
tree belongs to. When a branch is taken, each of the variables in the branch is bound to the 
corresponding field of tree, and the expression in the branch is evaluated.

To see how this works, assume that tree is bound to a tree that was built by interior-node. 
For this binding of tree, the interior-node branch would be selected, left would be 
bound to the left subtree, right would be bound to the right subtree, and the expression (+ 
(leaf-sum left) (leaf-sum right)) would be evaluated. The recursive calls to leaf-
sum would work similarly to finish the problem.

The form cases binds its variables positionally: the i-th variable is bound to the value in the i-th 
field. So we could just as well have written (leaf-node (n) n) instead of (leaf-node 
(datum) datum), etc.



 

Exercise 2.4 [ ] Implement a bintree-to-list procedure for binary trees, so that (bintree-
to-list (interior-node 'a (leaf-node 3) (leaf-node 4))) returns the 
list

(interior-node  a  (leaf-node 3)  (leaf-node 4))

Exercise 2.5 [ ] Use cases to write max-interior, which takes a binary tree of numbers 
with at least one interior node and returns the symbol associated with an interior node with a maximal leaf sum.

> (define tree-a    (interior-node 'a (leaf-node 2) (leaf-node 3)))
> (define tree-b    (interior-node 'b (leaf-node -1) tree-a))
> (define tree-c    (interior-node 'c tree-b (leaf-node 1)))> (max-
interior tree-b)a> (max-interior tree-c)c

The last invocation of max-interior might also have returned a, since both the a and c nodes 
have a leaf sum of 5.

The general syntax of cases is

(cases type-name expression   {(variant-name ({field-name}*) consequent)}*   (else default))

The form specifies the type, the expression yielding the value to be examined, and a sequence of 
clauses. Each clause is labeled with the name of a variant of the given type and the names of its 
fields. The else clause is optional. First, expression is evaluated, resulting in some value v of 
type-name. If v is a variant of variant-name, then the corresponding clause is selected. Each of the 
field-names is bound to the value of the corresponding field of v. Then the consequent is evaluated 
within the scope of these bindings and its value returned. If v is not one of the variants, and an 
else clause has been specified, default is evaluated and its value returned. If there is no else 
clause, then there must be a clause for every variant of that data type.

The form define-datatype provides a convenient way of defining an inductive data type, but 
it is not the only way. Depending on the application, it may be valuable to use a special purpose 
representation that is more



 

compact or efficient, taking advantage of special properties of the data. These advantages are 
gained at the expense of having to write the procedures in the interface by hand. We shall see 
some examples of this in section 2.3.

2.2.2 Abstract Syntax and its Representation

In section 1.1 we introduced the language of lambda calculus expressions, defined by the grammar

Following the pattern we used for <bintree>, we can represent every lambda calculus expression 
using the data type defined by

(define-datatype expression expression?  (var-
exp    (id symbol?))  (lambda-
exp    (id symbol?)    (body expression?))  (app-
exp    (rator expression?)    (rand expression?)))

Here the names var-exp, id, app-exp, rator, and rand abbreviate variable 
expression, identifier, application expression, operator, and operand, respectively.

A BNF definition specifies a particular representation of an inductive data type: one that uses the 
particular strings or values generated by the grammar. Such a representation is called concrete 
syntax, or external representation.

In order to process such data, we need to convert it to an internal representation. In abstract 
syntax, terminals such as parentheses need not be stored, because they convey no information. On 
the other hand, we want to make sure that the data structure allows us to determine easily what 
kind of lambda calculus expression it represents, and to extract its components easily. The data 
type expression provides exactly this.

To create an abstract syntax for a given concrete syntax, we must name each production of the 
concrete syntax and each occurrence of a nonterminal in each production. For the grammar of 
lambda calculus expressions, we can



 

Figure 2.1 Abstract syntax tree for (lambda (x) (f (f x)))

summarize the choices we have made using the following concise notation:

Such notation, which specifies both concrete and abstract syntax, is used throughout this book.

Given the abstract syntax name choices reflected in this notation, it is straightforward to generate 
define-datatype declarations for the abstract syntax. One declaration is used for each 
nonterminal, using the nonterminal name as the data type name.

The abstract syntax representation of an expression is most readily viewed as an abstract syntax 
tree. For example, see figure 2.1 for the abstract syntax tree of the lambda calculus expression 
(lambda (x) (f (f x))). Each node of the tree corresponds to a step in a syntactic 
derivation of the expres-



 

sion, with internal nodes labeled with their associated production name. Edges are labeled with the 
name of the corresponding nonterminal occurrence. Leaves correspond to terminal strings.

Exercise 2.6 [ ] Draw the abstract syntax tree for the lambda calculus expression

((lambda (a) (a b)) c)

Abstract syntax trees are useful in programming-language processing systems because programs 
that process other programs, such as interpreters or compilers, are almost always syntax directed. 
What is done with each part of a program is guided by knowledge of the grammar rule associated 
with that part, and any subparts corresponding to nonterminals in the grammar rules should be 
readily accessible. For example, when processing the lambda calculus expression (lambda 
(x) (f (f x))), we must first recognize it as a lambda calculus expression, corresponding to 
the BNF rule

Then the formal parameter is x and the body is (f (f x)). The body must in turn be 
recognized as an application, and so on. Converting the program to an abstract syntax tree enables 
the processing system to make such decisions easily.

For example, the procedure occurs-free? in section 1.3 can be:

(define occurs-free?  (lambda (var exp)    (cases expression exp      (var-
exp (id) (eqv? id var))      (lambda-
exp (id body)        (and (not (eqv? id var))             (occurs-
free? var body)))      (app-exp (rator rand)        (or (occurs-
free? var rator)            (occurs-free? var rand))))))

The use of the abstract syntax avoids the use of obscure car-cdr chains to extract the components 
of the expression.

As another example, we may consider the problem of converting an abstract syntax tree back to a 
list-and-symbol representation. If we do this, the Scheme print routines will then display it in its 
concrete syntax. This is performed by unparse-expression:



 

(define unparse-expression  (lambda (exp)    (cases expression exp      (var-
exp (id) id)      (lambda-
exp (id body)        (list 'lambda (list id)          (unparse-
expression body)))      (app-exp (rator rand)        (list (unparse-
expression rator)              (unparse-expression rand))))))

If a program is represented as a string of characters, it may be a complex undertaking to derive the 
corresponding abstract syntax tree. This task, which is called parsing, is unrelated to whatever we may wish 
to do with the abstract syntax tree. Thus the job of parsing is best performed by a separate program, called a 
parser. Since abstract syntax trees are produced by parsers, they are also known as parse trees.

If the concrete syntax of a language happens also to be list structures (including symbols and numbers), the 
parsing process is greatly simplified. For example, every expression specified by our lambda calculus 
grammar is both a string and a list structure. The Scheme read routine automatically parses strings into lists 
and symbols. It is then easier to parse these list structures into abstract syntax trees as in parse-
expression.

(define parse-expression  (lambda (datum)    (cond      ((symbol? datum) (var-
exp datum))      ((pair? datum)       (if (eqv? (car datum) 'lambda)         (lambda-
exp (caadr datum)           (parse-expression (caddr datum)))         (app-
exp           (parse-expression (car datum))           (parse-
expression (cadr datum)))))      (else (eopl: error 'parse-
expression              "Invalid concrete syntax ~s" datum)))))

Where a Kleene star or plus is used in concrete syntax, it is most convenient to use a list of associated 
subtrees when constructing an abstract syntax tree. For example, consider a variant of the exercise 1.31 
syntax in figure 2.2. Here ids and rands are associated with lists of formal parameters and operand 
expressions, respectively. The predicate for the rands field can be (list-of expression?).



 

Figure 2.2 Lists of formal parameters and operand expressions

Exercise 2.7 [ ] Define the data type and parse and unparse procedures for the above grammar. Then 
implement lexical-address of exercise 1.31 using abstract syntax. It will be helpful to add two new 
variants

(lex-info  (id symbol?)  (depth number?)  (position number?))(free-
info  (id symbol?))

representing the translation of a given bound or free variable reference. The value returned by lexical-
address may then be generated using an unparse procedure that takes an abstract syntax tree of the form 
indicated by the above grammar, but with lex-info and free-info variants in place of var-exp 
variants.

Exercise 2.8 [ ] Rewrite the solution to exercise 1.19 using abstract syntax. Then compare this version to the 
original solution.

Exercise 2.9 [ ] The procedure parse-expression is fragile: it does not detect several possible 
syntactic errors, such as (a b c), and aborts with inappropriate error messages for other expressions, such 
as (lambda). Modify it so that it is robust, accepting any datum and issuing an appropriate error message 
if the datum does not represent a lambda calculus expression.



 

Exercise 2.10 [ ] Consider the definition of fresh-id:

(define fresh-id  (lambda (exp s)    (let ((syms (all-
ids exp)))      (letrec        ((loop (lambda (n)                 (let ((sym (string-
>symbol                              (string-append s                                (number-
>string n)))))                   (if (memv sym syms) (loop (+ n 1)) sym)))))        (loop 0)))))

Implement fresh-id by defining all-ids, which finds all the symbols in an expression. This includes the free occurrences, the 
bound occurrences, and the lambda identifiers for which there are no bound occurrences.

> (fresh-id    (app-exp      (lambda-exp 'w2        (app-exp (var-exp 'w1) (var-
exp 'w0)))      (var-exp 'w3))    "w")w4

Exercise 2.11 [ ] Let us assume that our lambda calculus expression has been enhanced with the constants 3, *, and +. Extend 
parse-expression and unparse-expression to support this enhancement.

Next, consider substituting (* p 3) for x in (lambda (p) (+ p x)) and (lambda (q) (+ q x)). The 
resulting expressions are (lambda (p) (+ p (* p 3))) and (lambda (q) (+ q (* p 3))).

This is wrong, because we know that changing the name of a bound variable shouldn't make a difference: (lambda (p) (+ p 
x)) and (lambda (q) (+ q x)) should behave the same way, and the terms after substitution will definitely behave 
differently. In the first example, we say that the p in (* p 3) has been captured by the binding occurrence.

We can fix this problem by renaming the bound variable to some fresh name, say p0, so the result of the substitution becomes (lambda 
(p0) (+ p0 (* p 3))). Capture is thereby avoided; it no longer matters whether the original bound variable was p or q. Here 
is the notation we use for this thoughout: E1[E2/x]. The resultant expression is the same as E1 with free occurrences of the identifer x replaced 
by the expression E2.

Below is the definition of a procedure that substitutes subst-exp for all occurrences of subst-id in exp, but without renaming.



 

(define lambda-calculus-subst  (lambda (exp subst-exp subst-
id)    (letrec      ((subst         (lambda (exp)           (cases expression exp             (var-
exp (id)               (if (eqv? id subst-id) subst-exp exp))             (lambda-
exp (id body)               (lambda-exp id (subst body)))             (app-
exp (rator rand)               (app-exp (subst rator) (subst rand)))             (lit-
exp (datum)               (lit-exp datum))             (primapp-
exp (prim rand1 rand2)               (primapp-
exp prim (subst rand1) (subst rand2)))             ))))      (subst exp))))

Fix lambda-calculus-subst so that it performs renaming when necessary. Hint: use fresh-id from the previous exercise.

Exercise 2.12 [ ] In the previous exercise, we presented the lambda calculus substitution operator, E1[E2/x]. Here, we define three new operators 
that rely on it: α, β, and η.

• (lambda (y) E) α-converts to (lambda (x) E[x/y]), if x is not free in E

• ((lambda (x) E1) E2) β-converts to E1[E2/x]

• (lambda (x) (E x)) η-converts to E, if x is not free in E.

Implement these operators. Do they use recursion explicitly?

Exercise 2.13 [ ] Define a term to be either a variable, a constant (either a string, a number, a boolean, or the empty list), or a list of terms. We 
can use the following data type to define the abstract syntax of terms.

(define-datatype term term?  (var-term    (id symbol?))  (constant-
term    (datum constant?))  (app-term    (terms (list-of term?))))



 

We represent a term using symbols for variables and lists for app terms, while treating everything else as a 
constant. Thus the term

("append" ("cons" w x) y ("cons" w z))

represents an abstract syntax tree that can be built by

(app-term  (list    (constant-term "append")    (app-
term      (list        (constant-term "cons") (var-term 'w) (var-
term 'x)))    (var-term 'y)    (app-term      (list        (constant-
term "cons") (var-term 'w) (var-term 'z)))))

Implement parse-term, unparse-term, and all-ids (exercise 2.10) for this term language.

2.3 Representation Strategies for Data Types

We have seen that when data abstraction is used, programs have the property of representation 
independence: programs are independent of the particular representation used to implement an 
abstract data type. It is then possible to change the representation by redefining the small number 
of procedures belonging to the interface. We frequently use this property in later chapters.

In this section we introduce some strategies for representing data types. We illustrate these choices 
using a data type of environments. An environment associates a value with each element of a finite 
set of symbols. An environment may be used to associate variables with their values in a 
programming language implementation. A symbol table, which among other things may associate 
variable names with lexical address information at compile time, is another use of an environment.

2.3.1 The Environment Interface

An environment is a function whose domain is a finite set of Scheme symbols, and whose range is 
the set of all Scheme values. If we adopt the usual mathematical convention that a function is a set 
of ordered pairs, then we need to represent all sets of the form {(s1, v1), . . ., (sn, vn)} where the si 
are distinct symbols and the vi are any Scheme values.



 

The interface to this data type has three procedures, specified as follows:

The procedure empty-env, applied to no arguments, must produce a representation of the empty 
environment; apply-env applies a representation of an environment to an argument; and 
(extend-env ' (s1 . . .sn) ' (v1 . . .vn) env) produces a new environment that behaves like env, 
except that its value at symbol si is vi. For example, the environment {(d,6), (x,7), (y,8)} may be 
constructed and accessed as follows:

> (define dxy-env    (extend-env '(d x) '(6 7)      (extend-
env '(y) '(8)        (empty-env))))> (apply-env dxy-env 'x)7

Most interfaces will contain some constructors that build elements of the data type, and some 
observers that extract information from values of the data type. In this example, empty-env and 
extend-env are the constructors, and apply-env is the only observer.

Exercise 2.14 [ ] Consider the data type of stacks of values, with an interface consisting of the procedures 
empty-stack, push, pop, top, and empty-stack?. Write a specification for these 
operations in the style of the example above. Which operations are constructors and which are observers?

2.3.2 Procedural Representation

A first-class object is one that can be passed as an argument, returned as a value, and stored in a 
data structure. In languages such as Scheme in which procedures are first-class, it is often 
advantageous to represent data as procedures, particularly when the data type has multiple 
constructors, but only a single observer.



 

(define empty-env  (lambda ()    (lambda (sym)      (eopl:error 'apply-env "No binding for ~s" sym))))
(define extend-env  (lambda (syms vals env)    (lambda (sym)      (let ((pos (list-find-
position sym syms)))        (if (number? pos)          (list-ref vals pos)          (apply-
env env sym))))))(define apply-env  (lambda (env sym)    (env sym)))(define list-find-
position  (lambda (sym los)    (list-index (lambda (sym1) (eqv? sym1 sym)) los)))(define list-
index  (lambda (pred ls)    (cond      ((null? ls) #f)      ((pred (car ls)) 0)      (else (let ((list-
index-r (list-index pred (cdr ls))))              (if (number? list-index-r)                (+ list-
index-r 1)                #f))))))

Figure 2.3 Procedural representation of environments

An environment may be represented as a Scheme procedure that takes a symbol and returns its associated value. With this 
representation, the environment interface may be defined as in figure 2.3.

If the empty environment, created by invoking empty-env, is passed any symbol whatsoever, it indicates with an error message 
that the given symbol is not in its domain. The procedure extend-env returns a new procedure that represents the extended 
environment. This procedure, when passed a



 

symbol sym, first uses the auxiliary procedure list-find-position to determine the 
position of sym in syms. The procedure list-find-position, in turn, uses list-index 
to accomplish this. If sym is in syms, then list-index returns an integer representing its 
position, and the corresponding element of vals is returned using the procedure list-ref. If 
sym is not in syms, then list-index returns #f, and sym is looked up in the old environment 
env, in accordance with the specification.

Very often the set of values in the data type can be represented as a set of procedures. In this case, 
we can extract the interface and the procedural representation by the following steps:

1. Identify the lambda expressions in the client code whose evaluation yields values of the type. 
Create a constructor procedure for each such lambda expression. The parameters of the constructor 
procedure will be the free variables of the lambda expression. Replace each such lambda 
expression in the client code by an invocation of the corresponding constructor.

2. Define an apply- procedure like apply-env above. Identify all the places in the client code, 
including the bodies of the constructor procedures, where a value of the type is applied. Replace 
each such application by an invocation of the apply- procedure.

If these steps are carried out, the interface will consist of all the constructor procedures and the 
apply- procedure, and the client code will be representation-independent: it will not rely on the 
representation, and we will be free to substitute another implementation of the interface, such as 
those we are about to describe.

Exercise 2.15 [ ] Implement the stack data type of exercise 2.14 using a procedural representation.

Exercise 2.16 [ ] Implement the procedure list-find-last-position, which is like list-
find-position except that it returns the position of the rightmost matching symbol. For example, in 
the list (c a b a c a d e), the list-find-position of a is 1, whereas list-
find-last-position of a is 5. Do this without using reverse or list->vector. When 
can list-find-position be used in place of list-find-last-position?

Interfaces created in this way will have only one observer. If more than one observer is needed, a 
single procedure as described here may not be enough to represent all the data. In general, if there 
are n observers in the interface the procedural representation will require a record of n procedures, 
one for each observer.



 

Exercise 2.17 [ ] Add to the environment interface a predicate called has-association? that 
takes an environment env and a symbol s and tests to see if s has an associated value in env. Extend the 
procedural representation to implement this by representing the environment by two procedures: one that 
returns the value associated with a symbol and one that returns whether or not the symbol has an association.

2.3.3 Abstract Syntax Tree Representation.

This procedural representation is easy to understand, but it requires that procedures be first-class 
objects. Another representation can be obtained by observing that every environment is built by 
starting with the empty environment and applying extend-env n times, for some n ≥ 0. Thus 
every environment can be built by an expression like

(extend-env symsn valsn      ...      (extend-env syms1 vals1          (empty-
env)) ...)

These expressions can be described by the grammar

The abstract syntax trees for this grammar can be defined by

(define-datatype environment environment?  (empty-env-record)  (extended-
env-record    (syms (list-of symbol?))    (vals (list-of scheme-
value?))    (env environment?)))(define scheme-value? (lambda (v) #t))

We can implement the environment abstraction by redefining the procedures empty-env and 
extend-env to build the appropriate variants and by redefining apply-env to interpret the 
information in these records and perform the actions specified by the body of the appropriate 
(lambda (sym) ...) expression. The implementation of the environment data type using 
this new representation is:



 

(define empty-env  (lambda ()    (empty-env-record)))(define extend-
env  (lambda (syms vals env)    (extended-env-record syms vals env)))
(define apply-env  (lambda (env sym)    (cases environment env      (empty-
env-record ()        (eopl:error 'apply-
env "No binding for ~s" sym))      (extended-env-
record (syms vals env)        (let ((pos (list-find-
position sym syms)))          (if (number? pos)            (list-
ref vals pos)            (apply-env env sym)))))))

The consequent expressions of the cases expression are exactly the same as the bodies of the 
respective (lambda (sym) ...) expressions in the procedural representation, and the variant 
fields correspond exactly to the lexically-bound free variables in these lambda expressions.

With this representation, the last transcript might continue as follows.

> (environment-to-list dxy-env)(extended-env-record (d x) (6 7)  (extended-
env-record (y) (8)    (empty-env-record)))

The result is a list representation of an abstract syntax tree that shows how the tree was 
constructed using empty-env and extend-env.

Exercise 2.18 [ ] Implement environment-to-list.

This example illustrates a general technique for transforming a procedural representation into an 
abstract syntax tree representation. The key steps in the transformation are:

1. Identify the constructors for new values of the type, and create a data type with one variant for 
each constructor. Each variant should have one field for each parameter of the constructor. If the 
type has been derived from a set of procedures, as described at the end of section 2.3.2, then the 
fields will be the same as the free variables of the original lambda expression.



 

2. Define the constructors to build the appropriate variant of the data type.

3. Define the apply- procedure for the type using (cases type-name . . .) with one clause per 
variant, where the variable list of each clause lists the parameters of the constructor and the 
consequent expression of each clause is the body of the corresponding lambda expression.

Exercise 2.19 [ ] Implement the stack data type of exercise 2.14 using an abstract syntax tree representation.

Exercise 2.20 [ ] Add has-association? of exercise 2.17 to the abstract syntax tree representation.

2.3.4 Alternative Data Structure Representations

As we mentioned above, define-datatype provides a convenient general implementation of 
trees. In many cases, however, we can exploit patterns in the data to obtain additional 
simplifications.

For example, as we noted above, every environment is built by starting with the empty 
environment and applying extend-env some number of times: that is, by an expression in the 
grammar

We need to represent the abstract syntax trees of this grammar. We could represent them by a data 
type, but we can use any representation in which we can always tell what kind of tree we have and 
from which we can extract the pieces.

Here, we have a single constant constructor and a single non-trivial constructor. So the tag 
information in the abstract syntax trees is redundant. We could simply represent these trees by list 
structures given by the grammar

We can always tell which kind of environment we have: an empty list represents the empty 
environment, and a non-empty list represents an environment built by extend-env.

For a data structure representation, the constructors simply build the appropriate list structure. An 
observer examines the data structure it is given, determines which kind of structure it is, extracts 
the components, and



 

performs the same operations on the components that it did in the abstract syntax tree representation. Thus our running example becomes:

> (define dxy-env    (extend-env '(d x) '(6 7)      (extend-env '(y) '(8)        (empty-env))))> dxy-env(((d x) (6 7)) ((y) (8)))

Exercise 2.21 [ ] What list structure does (extend-env '() '() (empty-env)) produce?

We use these definitions to implement our environment interface:

(define empty-env  (lambda ()    '()))(define extend-env  (lambda (syms vals env)    (cons (list syms vals) env)))(define apply-
env  (lambda (env sym)    (if (null? env)      (eopl:error 'apply-
env "No binding for ~s" sym)      (let ((syms (car (car env)))            (vals (cadr (car env)))            (env (cdr env)))        (let ((pos (list-
find-position sym syms)))          (if (number? pos)            (list-ref vals pos)            (apply-env env sym)))))))

This representation is called the ribcage representation. The environment is represented as a list of lists called ribs; the car of each rib is a list of symbols and the cadr of each rib is the 
corresponding list of values.

Some efficiency may be gained by observing that we are always using an index to retrieve values from the values list. If the values were stored in a vector instead of a list, this lookup would 
be constant (using vector-ref) rather than linear time (using list-ref). We also take this opportunity to change the representation of a rib from a list of two elements to a single pair. 
For this new representation, we modify our previous code to become



 

(define extend-env  (lambda (syms vals env)|   (cons (cons syms (list->vector vals)) env)))(define apply-
env  (lambda (env sym)    (if (null? env)      (eopl:error 'apply-
env "No binding for ~s" sym)      (let ((syms (car (car env)))|           (vals (cdr (car env)))            (env (cdr env)))        (let ((pos (list-
find-position sym syms)))          (if (number? pos)|           (vector-ref vals pos)            (apply-env env sym)))))))

Figure 2.4 shows an environment represented in this way. This figure also illustrates why this is called a ribcage representation. (See exercise 2.22.)

If environment lookup is based on lexical distance information, we can eliminate the symbol lists, representing environments simply as a list of vectors as in apply-env-lexical below.

(define extend-env  (lambda (syms vals env)|   (cons (list->vector vals) env)))(define apply-env-
lexical  (lambda (env depth position)    (if (null? env)      (eopl:error 'apply-env-
lexical        "No binding for depth = ~s position = ~s"        depth position)      (if (zero? depth)        (vector-
ref (car env) position)        (apply-env-lexical (cdr env) (- depth 1) position)))))

Exercise 2.22 [ ] Design a 2-element rib data type and use it to implement the environment interface.

Exercise 2.23 [ ] A simpler representation of environments would consist of a single pair of ribs: a list of symbols and a list of values. Implement the environment interface for this representation.



 

Figure 2.4 Ribcage environment structure with vectors

Exercise 2.24 [ ] Define a substitution to be a function whose domain is the set of Scheme symbols and 
whose range is the set of all terms (exercise 2.13). The interface for substitutions consists of (empty-
subst), which binds its argument to a variable term of its argument, referred to as a trivial association; 
(apply-subst s i), which returns the value of symbol i in substitution s; and (extend-subst i t s), 
which returns a new substitution like s, except that symbol i is associated with term t.

Implement the data type of substitutions with both a procedural representation and an abstract syntax tree 
representation.

Then implement a procedure subst-in-term that takes a term and a substitution and walks through the 
term replacing each variable with its association in the substitution, much like the procedure subst of 
section 1.2.2. Finally, implement subst-in-terms that takes a list of terms.

Exercise 2.25 [ ] An important use of substitutions is in the unification problem. The unification problem 
is: given two terms t and u, can they be made equal? More precisely, is there a substitution s such that 
(subst-in-term t s) and (subst-in-term u s) are equal? We say that such an s unifies t and u. 
There may be many such unifiers, but there will always be one that is the most general.



 

The code below shows part of an algorithm to find the most general unifying substitution. If no such unifier 
exists, it returns #f.

(define unify-term  (lambda (t u)    (cases term t      (var-
term (tid)        (if (or (var-term? u) (not (memv tid (all-
ids u))))          (unit-
subst tid u)          #f))      (else        (cases term u          (var-
term (uid) (unify-term u t))          (constant-
term (udatum)            (cases term t              (constant-
term (tdatum)                (if (equal? tdatum udatum) (empty-
subst) #f))              (else #f)))          (app-
term (us)            (cases term t              (app-term (ts) (unify-
terms ts us))              (else #f))))))))(define unify-
terms  (lambda (ts us)    (cond      ((and (null? ts) (null? us)) (empty-
subst))      ((or (null? ts) (null? us)) #f)      (else        (let ((subst-
car (unify-term (car ts) (car us))))          (if (not subst-
car)            #f            (let ((new-ts (subst-in-terms (cdr ts) subst-
car))                  (new-us (subst-in-terms (cdr us) subst-
car)))              (let ((subst-cdr (unify-terms new-ts new-
us)))                (if (not subst-
cdr)                  #f                  (compose-substs subst-car subst-
cdr))))))))))

Complete the algorithm by extending the substitution interface with the two procedures unit-subst and 
compose-substs. The application (unit-subst i t) returns a substitution that replaces symbol i 
with term t and replaces any other symbol by its trivial association. The application (compose-substs 
s1 s2) returns a substitution s' such that for any term t, (subst-in-term t s') returns the same term as 
(subst-in-term (subst-in-term t s1) s2).

The memv test in unify-term is called the occurs check. Create an example to illustrate that this test is 
necessary.



 

2.4 A Queue Abstraction

As a final example of the use of data abstraction, consider queues. An interface for queues might 
include operations for setting the queue to empty, testing it for empty, placing a value on the 
queue, and removing an object from the queue.

In a functional setting, these operations might take queues as arguments and return queues as 
results. However, we often want queues to be shared from widely separate procedures, so it would 
be difficult to pass the queues as arguments from one procedure to another. In this situation it is 
more convenient for the procedures to refer to a shared queue with state.

The representation of the queue is hidden, so the interface consists of a procedure for creating a 
queue and procedures that will return each of the operations that will act on the shared hidden state 
of the queue.

This interface consists of the following procedures:

• (create-queue) creates a queue object.

• (queue-get-reset-operation q) returns a procedure that sets the queue to empty.

• (queue-get-empty?-operation q) returns a procedure that determines whether the 
queue is empty.

• (queue-get-enqueue-operation q) returns the enqueue operation on the queue.

• (queue-get-dequeue-operation q) returns the dequeue operation on the queue.

The code in figure 2.5 creates such a queue. It creates four procedures with access to a shared 
hidden state consisting of the variables q-in and q-out. Instead of assigning these procedures to 
global variables, we return a vector containing these four procedures. Then client code can use this 
vector like this:

(let ((q1 (create-queue)) (q2 (create-queue)))  (let ((enq1 (queue-get-
enqueue-operation q1))        (enq2 (queue-get-enqueue-
operation q2))        (deq1 (queue-get-dequeue-
operation q1))        (deq2 (queue-get-dequeue-
operation q2)))    (begin      (enq1 33) (enq2 (+ 1 (deq1))) (deq2))))



 

(define create-queue  (lambda ()    (let ((q-in '())          (q-out '()))      (letrec        ((reset-
queue           (lambda ()             (set! q-in '())             (set! q-out '())))        (empty-
queue?          (lambda ()            (and (null? q-in)                 (null? q-
out))))        (enqueue          (lambda (x)            (set! q-in (cons x q-
in))))        (dequeue          (lambda ()            (if (empty-queue?)              (eopl:
error 'dequeue                "Not on an empty queue")              (begin                (if (null? q-
out)                  (begin                    (set! q-out (reverse q-in))                    (set! q-
in '())))                  (let ((ans (car q-out)))                    (set! q-out (cdr q-
out))                    ans))))))        (vector reset-queue empty-queue? enqueue dequeue)))))
(define queue-get-reset-operation  (lambda (q) (vector-ref q 0)))(define queue-get-empty?-
operation  (lambda (q) (vector-ref q 1)))(define queue-get-enqueue-operation  (lambda (q) (vector-
ref q 2)))(define queue-get-dequeue-operation  (lambda (q) (vector-ref q 3)))

Figure 2.5 A data type of queues



 

This creates two queues, initially empty. It binds the enqueue and dequeue operations on these 
queues to convenient names. Then it places the number 33 on the first queue, removes it, adds one 
to it, places it on the second queue, and then removes it, producing the answer 34.

The code in figure 2.5 has a useful but non-obvious property: it uses amortized linear time. The 
dequeue operation may take longer than constant time, because it may need to reverse q-in, but 
it can be shown that this occurs so rarely that the queue takes only O(n) steps to execute n 
requests. The proof of this property is beyond the scope of this book.

The idea of sharing a small hidden state among a bundle of procedures is important. Such a 
package is often called an object, and the procedures that act on the state are called methods. This 
is the main idea of object-oriented programming, which we study in chapters 5 and 6. In the 
context of operating systems, methods are sometimes called capabilities.

Exercise 2.26 [ ] A cell interface consists of these four operations: cell, cell?, contents, 
and setcell. The procedure cell stores its argument in a memory location; cell? determines if its 
argument is a cell; contents retrieves the value of the cell; and setcell stores its second argument in 
the first argument, which must be a cell. Use the data type reference with a one-element vector to 
implement the cell interface. Then use the queue interface style to encapsulate these definitions.

(define-datatype reference reference?  (a-
ref    (position integer?)    (vec vector?)))

Further Reading

The idea of data abstraction was a prime innovation of the 1970s and has a large literature, from 
which we mention only (Parnas, 1972) on the importance of interfaces as boundaries for 
information-hiding.

Our define-datatype and cases "consconstructs were inspired by ML's datatype and 
pattern-matching facilities described in (Milner, Tofte, & Harper, 1989) and (Milner, Tofte, 
Harper, & MacQueen, 1997).

We learned about the representation of sets of procedures as data structures from (Reynolds, 
1972). This idea is formalized under the name of supercombinators in (Hughes, 1982). For more 
detail, see (Peyton Jones, 1987).

The concept of unification was brought into computer science in (Robinson, 1965) for use in 
automatic theorem proving. The implementation of queues in section 2.4 is presented in (Okasaki, 
1998).



 

3 Environment-Passing Interpreters

In this chapter we study the semantics, or meaning, of some of the most common and fundamental 
programming languages features. Our primary tool for this study is interpreters. Figure 3.1(a) 
shows the setup for using an interpreter. Program text (a program in the source language) is passed 
through a front end that converts it to a syntax tree. The syntax tree is then passed to the 
interpreter, which is a program that looks at a data structure and performs some actions that 
depend on its structure. In the case of a language-processing system, the interpreter takes the 
abstract syntax tree and converts it, possibly using external inputs, to an answer.

An alternative organization is shown in Figure 3.1(b). There the interpreter is replaced by a 
compiler, which translates the abstract syntax tree into some other language (the target language), 
which in turn is executed by an interpreter. Most often, this other language is a machine language, 
which is interpreted by a hardware machine, but some language implementations use a special-
purpose target language that is simpler than the original and for which it is relatively simple to 
write an interpreter. This allows the program to be compiled once and then executed on many 
different hardware platforms.

A compiler is typically divided into two parts: an analyzer that attempts to deduce useful 
information about the program, and a translator that does the translation, possibly using 
information from the analyzer. We study some simple analyzers and translators in chapters 4, 6, 
and 8.

Other than those chapters, our language processors will be interpreters. They allow us to specify 
the behavior of language features in a high-level fashion without also having to deal with the 
peculiarities of a target language.



 

(a) Execution via interpreter

(b) Execution via Compiler

Figure 3.1 Block diagrams for a language-processing system

We develop interpreters for a series of simple languages. Each interpreter is a data-driven 
procedure. We have already developed several such procedures. These include occurs-
free?, lambda-calculus-subst, parse-expression, and unparse-
expression of section 2.2.2, and the apply- procedures of section 2.3. Each of these 
procedures takes data and performs some action determined by the form of the data.

The semantics of variable binding mechanisms is of primary importance in these languages. We 
are also interested in seeing how these bindings are made concrete using environments.



 

3.1 A Simple Interpreter

In this section we develop a simple interpreter that reflects the fundamental semantics of many 
modern programming languages and is the basis for most of the material in the rest of this book. 
We build this interpreter in stages, starting with the simplest forms: literals, variables, and 
primitive applications. Then we add other forms one at a time.

An important part of the specification of any programming language is the set of values that the 
language manipulates. Each language has at least two such sets: the expressed values and the 
denoted values. The expressed values are the possible values of expressions, and the denoted 
values are the values bound to variables. In Scheme, for example, there are many kinds of 
expressed values, such as numbers, pairs, characters, and strings, but there is only one kind of 
denoted value: locations containing expressed values.

In our first language the expressed values are the integers, and the denoted values are the same as 
the expressed values. We write this as follows:

We use equations like this as informal reminders of the expressed and denoted values for each of 
our interpreters.

We also need to distinguish two languages: the defined language (or source language), which is 
the language we are specifying with our interpreter, and the defining language (or host language), 
which is the language in which we write the interpreter. In our case the defining language is 
Scheme with define-datatype and cases. The equations above describe the expressed and 
denoted values of the defined language.

We start with the following syntax:





 

A program is just an expression. An expression is either a number, an identifier, or a primitive 
application consisting of a primitive operator, a left parenthesis, a list of expressions separated by 
commas, and a right parenthesis. Typical expressions in our language are

3x+(3,x)add1(+(3,x))

The abstract syntax trees are built, as before, of records with type definitions based on the abstract 
syntax names given with the grammar.

(define-datatype program program?  (a-program    (exp expression?)))
(define-datatype expression expression?  (lit-
exp    (datum number?))  (var-exp    (id symbol?))  (primapp-
exp    (prim primitive?)    (rands (list-of expression?)))  )(define-
datatype primitive primitive?  (add-prim)  (subtract-prim)  (mult-
prim)  (incr-prim)  (decr-prim))

The second field of a primapp-exp record contains a list of abstract syntax trees for the 
application's operands. For the primitive operations, we have one variant for each primitive.

Exercise 3.1 [ ] Consider the fourth example above. Then implement the procedure program-to-
list so that it returns the list

(a-program  (primapp-exp    (incr-prim)    ((primapp-exp       (add-
prim)       ((lit-exp 3)        (var-exp x))))))



 

Our first interpreter is shown in figure 3.2. It follows the grammar, so it has three procedures, 
eval-program, eval-expression, and apply-primitive, which correspond to the 
three nonterminals, <program>, <expression>, and <primitive>. In addition it has two auxiliary 
procedures, eval-rands and init-env, which simplify the presentation.

The main procedure, eval-program, is passed the abstract syntax tree of a program and returns 
its value. It follows a familiar pattern, branching on the type of record at the root of the tree. Since 
a program always consists of an expression, there is only one possibility, but we still need to use 
cases to extract this expression from the abstract syntax tree. The procedure eval-program 
passes this expression to eval-expression, along with a suitable environment in which to 
find the values of any identifiers that appear in the expression. The auxiliary procedure init-
env is called to build this environment; we have chosen to put a few arbitrary bindings in the 
initial environment.

The most interesting procedure is eval-expression. It takes an expression and an 
environment, and returns the value of the expression using that environment to find the values of 
any variables. Like eval-program, it branches on the type of the root of the tree:

• The first case is easy: If exp is a literal, the datum is returned.

• If exp is a node that represents a variable, we look up the identifier in the environment to find its 
value.

• The last possibility is that exp is a node that represents an application of a primitive operation to 
some operands. We first evaluate the operands, using the auxiliary procedure eval-rands, and 
then pass them and the primitive operation to apply-primitive to determine the actual value.

The procedure eval-rands takes a list of operands and an environment. It evaluates each 
operand using eval-rand, which in turn calls eval-expression. We need to pass the 
environment to both eval-rands and eval-rand so that they will have the information they 
need to evaluate any variables that appear in the subexpressions. We need not pass the 
environment to apply-primitive, however, because that procedure deals only with values, 
not with expressions that might contain variables.

The procedure apply-primitive takes a primitive operation and a list of values and produces 
the value that should be obtained by applying the primitive operation to the list of values. Like 
eval-program and



 

(define eval-program  (lambda (pgm)    (cases program pgm      (a-
program (body)        (eval-expression body (init-env))))))(define eval-
expression  (lambda (exp env)    (cases expression exp      (lit-
exp (datum) datum)      (var-exp (id) (apply-env env id))      (primapp-
exp (prim rands)        (let ((args (eval-
rands rands env)))          (apply-primitive prim args)))      )))
(define eval-rands  (lambda (rands env)    (map (lambda (x) (eval-
rand x env)) rands)))(define eval-rand  (lambda (rand env)    (eval-
expression rand env)))(define apply-
primitive  (lambda (prim args)    (cases primitive prim      (add-
prim () (+ (car args) (cadr args)))      (subtract-
prim () (- (car args) (cadr args)))      (mult-
prim () (* (car args) (cadr args)))      (incr-
prim () (+ (car args) 1))      (decr-prim () (- (car args) 1))      )))
(define init-env  (lambda ()    (extend-
env      '(i v x)      '(1 5 10)      (empty-env))))

Figure 3.2 A simple interpreter



 

eval-expression, it branches on the form of the primitive operation to decide what actual 
operation to perform on these values.

This completes the discussion of our first interpreter.

Exercise 3.2 [ ] In what order are the subexpressions in a primitive application evaluated? Is there a way to 
determine this empirically? Can the order affect the result?

3.2 The Front End

Before we can conveniently test our interpreter, however, we need a front end that converts 
programs into abstract syntax trees. Because programs are just strings of characters, our front end 
needs to group these characters into meaningful units. This grouping is usually divided into two 
stages: scanning and parsing.

Scanning is the process of dividing the sequence of characters into words, numbers, punctuation, 
comments, and the like. These units are called lexical items, lexemes, or most often tokens. We 
refer to the way in which a program should be divided up into tokens as the lexical specification of 
the language. The scanner takes a sequence of characters and produces a sequence of tokens.

Parsing is the process of organizing the sequence of tokens into hierarchical syntactic structures 
such as expressions, statements, and blocks. This is like organizing (diagramming) a sentence into 
clauses. We refer to this as the syntactic or grammatical structure of the language. The parser 
takes a sequence of tokens from the scanner and produces an abstract syntax tree.

The standard approach to building a front end is to use a parser generator. A parser generator is a 
program that takes as input a lexical specification and a grammar, and produces as output a 
scanner and parser for them. Appendix A describes SLLGEN, a parser-generator system for 
Scheme that we use in this book. In SLLGEN, the scanner and grammar for our example language 
are specified in figure 3.3.

The first definition is the lexical specification. It says that white space in the defined language 
(here called white-sp) is defined to be the same as any Scheme whitespace character and 
should be skipped; that a comment begins with a % character and consists of an arbitrary number 
of characters until the end of the line is reached; that an identifier consists of a letter followed by 
an arbitrary number of letters, digits, or question marks; and that a number consists of a digit 
followed by an arbitrary number of digits. The second



 

(define scanner-spec-3-1  '((white-sp      (whitespace)                           skip)    (comment      ("%" (arbno (not #
\newline)))          skip)    (identifier      (letter (arbno (or letter digit "?"))) symbol)    (number      (digit (arbno digit))                  number)))

(define grammar-3-1  '((program      (expression)      a-program)    (expression      (number)      lit-
exp)    (expression      (id)      var-exp)    (expression      (primitive "(" (separated-
list expression ",") ")" )      primapp-exp)    (primitive ("+")      add-
prim)    (primitive ("-")      subtract-prim)    (primitive ("*")      mult-
prim)    (primitive ("add1")      incr-prim)    (primitive ("sub1")      decr-prim)))

Figure 3.3 scanner-spec-3-1 and grammar-3-1



 

> (define scan&parse    (sllgen:make-string-parser      scanner-spec-3-
1      grammar-3-1))> (sllgen:make-define-datatypes scanner-spec-3-
1 grammar-3-1)> (define run    (lambda (string)      (eval-
program        (scan&parse string))))> (scan&parse "add1(2)")(a-
program (primapp-exp (incr-prim) ((lit-exp 2))))> (run "add1(2)")
3> (define read-eval-print    (sllgen:make-rep-loop "--> " eval-
program      (sllgen:make-stream-parser        scanner-spec-3-
1        grammar-3-1)))> (read-eval-print)--> 55--> add1(2)3--> +(add1
(2) ,-(6,4))5

Figure 3.4 Read-eval-print loop for string syntax

definition corresponds to the productions of the grammar in the preceding section. Each 
production is given a name, which becomes the name of the corresponding node type in the 
abstract syntax tree.

The procedure sllgen:make-define-datatypes can be used to automatically generate the 
define-datatype declarations from the grammar, or else these declarations can be generated 
by hand. The SLLGEN procedure sllgen:make-string-parser is used to construct a 
scanner and parser based on the lexical and grammatical specifications. It returns a procedure that 
takes a string and produces an abstract syntax tree (figure 3.4.)

Parser generator systems are available for most major languages. If no parser generator is 
available, or none is suitable for the application, one can



 

> (define run    (lambda (x)      (eval-program (parse-program x))))
> (run '5)5> (run '(add1 2))3> (define read-eval-
print    (lambda ()      (begin        (display "--
> ")        (write (eval-program (parse-
program (read))))        (newline)        (read-eval-print))))> (read-eval-
print)--> 55--> (add1 2)3--> (+ (add1 2) (- 6 4))5

Figure 3.5 Read-eval-print loop for Scheme-like syntax

choose to build a scanner and parser by hand. This process is described in most compiler 
textbooks. The parsing technology and associated grammars used in this book are designed for 
simplicity in the context of our very specialized needs.

Another approach is to ignore the details of the concrete syntax and to write our expressions as list 
structures, as we did in section 1.3. Thus, instead of writing add1 (+ (3,n)), we might write 
(add1 (+ 3 n)). For this approach, we need a procedure parse-program, which takes a 
Scheme list, symbol, or number and returns the corresponding abstract syntax tree. A test of this 
front end, using run, appears in figure 3.5.

While this approach is simple, it may lead to confusion between the defined language and the 
defining language. It may also require more cumbersome syntax than the original string-oriented 
syntax. When using this approach in doing exercises expressed in terms of string-grammar syntax, 
feel free to invent appropriate list-structure syntax for use instead.



 

The interactive user interface provided by most implementations of Scheme (and other languages 
suitable for interactive use) is a read-eval-print loop. The system reads an expression or definition, 
evaluates it, prints the result, and then loops to repeat these actions. (See the second definition in 
figure 3.5.) A read-eval-print loop for our interpreters makes it easier to run a number of tests.

By utilizing the SLLGEN procedures sllgen:make-stream-parser and sllgen:make-
rep-loop to connect the parser to the stream of characters coming from the standard input, we 
can define a read-eval-print loop using the string-syntax front end, as in figure 3.4. Since we will 
be using SLLGEN, henceforth, if the prompt --> appears in a transcript, it indicates that the 
current version of eval-program is performing the evaluation.

Exercise 3.3 [ ] Write parse-program. See section 2.2.2.

Exercise 3.4 [ ] Test eval-program using both run and a read-eval-print loop.

Exercise 3.5 [ ] Extend the language by adding a new primitive operator print that takes one argument, 
prints it, and returns the integer 1.

Exercise 3.6 [ ] Extend the language by adding a new primitive operator minus that takes one argument, n, 
and returns −n.

--> minus (+(minus(5), 9))-4

Exercise 3.7 [ ] Add list processing primitives to the language, including cons, car, cdr, 
list, and a new variable, emptylist, which is bound to the empty list. Since there is no support for 
symbols, lists can contain only numbers and other lists. How does this change the expressed and denoted 
values of the language?

--> list (1,2,3)(1 2 3)--> car (cons (4,emptylist))4

Exercise 3.8 [ ] Add a new primitive setcar, which side-effects the car field of a cons pair. How does 
this change the expressed and denoted values of the language?

Exercise 3.9 [ ] Modify the interpreter so that invoking a primitive operation on the wrong number of 
arguments causes an error to be reported. (Since this check involves only static information, it could be done 
prior to run-time, which is preferable for many reasons. We encourage the use of such an approach.)



 

3.3 Conditional Evaluation

To study the semantics and implementation of a wide range of programming language features, we 
now begin adding these features to our defined language. For each feature, we add a production to 
the grammar for <expression>, specify an abstract syntax for that production, and then add an 
appropriate cases clause to eval-expression to handle the new type of abstract syntax tree 
node. First we add a conditional expression syntax:

To avoid adding booleans as a new type of expressed value, we let zero represent false and any 
other value represent true and use the procedure true-value?, which abstracts this decision:

(define true-value?  (lambda (x)    (not (zero? x))))

If the value of the test-exp subexpression is a true value, the value of the entire if-exp 
should be the value of the true-exp subexpression; otherwise it should be the value of the 
false-exp subexpression. For example,

--> if 1 then 2 else 32--> if -(3,+(1,2)) then 2 else 33

This behavior is obtained by adding the following clause in eval-expression:

     (if-exp (test-exp true-exp false-exp)       (if (true-value? (eval-
expression test-exp env))         (eval-expression true-
exp env)         (eval-expression false-exp env)))

This code uses the if form of the defining language to define the if form of the defined 
language. This illustrates how we are dependent on our understanding of the defining language: if 
we do not know what Scheme's if does, this code would not help us understand the new 
language. In this case, of course, we do understand Scheme's if, and our code provides some 
additional information on the defined language's conditional expression as it considers any 
nonzero value to be true.



 

Exercise 3.10 [ ] Test if forms by extending the interpreter of figure 3.2.

Exercise 3.11 [ ] Add to the defined language numeric equality, zero-testing, and order predicates 
equal?, zero?, greater? and less? to the set of primitive operations. These predicates 
should use 1 to represent true.

--> equal? (3,3)1--> zero? (sub1(5))0--> if greater? (2,3) then 5 else 66

Exercise 3.12 [ ] Add to the defined language the facilities of exercise 3.7, along with the predicate null?.

Exercise 3.13 [ ] Add to the defined language a facility that extends if as cond does in Scheme. Use the 
grammar

If none of the tests succeeds, the expression should return 0.Exercise 3.14 [ ] Add boolean values to the 
expressed and denoted values of the language, so we have

Modify the predicates of exercise 3.11 to use these new booleans. Then modify eval-expression to 
produce an error if the test produces a non-boolean.

Exercise 3.15 [ ] As an alternative to the preceding exercise, add a new nonterminal <bool-exp> of boolean 
expressions to the language. Change the production for conditional expressions to say

Write suitable productions for <bool-exp> and implement eval-bool-exp. Where do the predicates of 
exercise 3.11 wind up in this organization?

3.4 Local Binding

Next we address the problem of creating new variable bindings with a let form. We add to the 
interpreted language a syntax in which the keyword let is followed by a series of declarations, 
the keyword in, and the body. For example,



 

let x = 5    y = 6in +(x,y)

The entire let form is an expression, as is its body, so let expressions may be nested. The usual 
lexical binding rules for block structure apply: the binding region of a let declaration is the body 
of the let expression, and inner bindings create holes in the scope of outer bindings. Thus in

let x = 1in let x = + (x,2)   in add1(x)

the reference to x in the first application refers to the outer declaration, whereas the reference to x 
in the second application refers to the inner declaration, and hence the value of the entire 
expression is 4.

The concrete syntax of the let form is

The abstract syntax now looks like

When a let expression is evaluated, the subexpressions on the right-hand side of its declarations 
are evaluated first. Since the scope of these declarations is restricted to the let expression's body, 
the right-hand side subexpressions are evaluated in env, the environment of the entire let 
expression.



 

Figure 3.6 Interpreter with if and let

Then the body of the let expression is evaluated in an environment in which the declared 
variables are bound to the values of the expressions on the right-hand sides of the declarations, 
whereas other bindings should be obtained from the environment in which the entire let 
expression is evaluated.

We obtain this behavior by adding the let-exp clause in figure 3.6. First, eval-rands is used 
to evaluate the right-hand side expressions in the environment env. Then, the body is evaluated in 
a new environment obtained by extending the current environment with bindings that associate the 
declared variables with the values of their right-hand-side expressions.

As expected for a lexical-binding language, a fixed region of text, body, is associated with the 
new environment bindings. Also, if extend-env creates a binding for an already bound 
variable, the new binding takes precedence over the old. Inner declarations thus shadow, or create 
holes in the scope of, outer declarations. For example, the subexpression add1 (x) is evaluated 
in a new environment obtained by extending an environment binding x to 1 with a binding of x to 
3. Since the binding of x to 3 takes precedence, the reference to x in add1 (x) yields 3 and the 
final value is 4. This satisfies the lexical binding rule associated with block-structured languages: a 
variable reference is associated with the nearest lexically enclosing binding of the variable.



 

Exercise 3.16 [ ] Test the let form of the interpreter of figure 3.6.

Exercise 3.17 [ ] Add to the defined language the facilities of exercise 3.7 and the primitive procedure eq?, 
which should correspond to the Scheme procedure eq?. Why could this predicate not be adequately tested 
until now?

Exercise 3.18 [ ] Add an expression to the defined language:

so that unpack x y z = lst in . . . binds x,y, and z to the elements of lst if lst is a list of 
exactly three elements, and reports an error otherwise.

3.5 Procedures.

So far our language has only the primitive operations that were included in the original language. 
For our interpreted language to be at all useful, we must allow new procedures to be created. We 
use the following syntax for procedure creation and application:

Thus we can write programs like

let f = proc (y, z) +(y,-(z,5))in (f 2 28)

Since the proc form may be used anywhere an expression is allowed, we can also write (proc
(y,z) + (y, - (z,5)) 2 28). This is the application of the procedure proc (y, z) 
+ (y, - (z,5)) to the literals 2 and 28.

We wish procedures to be first-class values in our language. Thus we want

where ProcVal is the set of values representing procedures. Our next task is to determine what 



information must be included in a value representing a procedure. To do this, we consider what 
happens at procedure-application time.



 

When a procedure is applied, its body is evaluated in an environment that binds the formal 
parameters of the procedure to the arguments of the application. Variables occurring free in the 
procedure should also obey the lexical binding rule. This requires that they retain the bindings that 
were in force at the time the procedure was created. Consider the following example:

let x = 5in let f = proc (y, z) +(y,-(z,x))       x = 28   in (f 2 x)

When f is called, its body should be evaluated in an environment that binds y to 2, z to 28, and x 
to 5. Recall that the scope of the inner declaration of x does not include the procedure declaration. 
Thus from the position of the reference to x in the procedure's body, the nearest lexically 
enclosing declaration of x is the outer declaration, which associates x with 5.

In order for a procedure to retain the bindings that its free variables had at the time it was created, 
it must be a closed package, independent of the environment in which it is used. Such a package is 
called a closure. In order to be self-contained, a closure must contain the procedure body, the list 
of formal parameters, and the bindings of its free variables. It is convenient to store the entire 
creation environment, rather than just the bindings of the free variables, but see exercise 3.27 for 
an alternative. We sometimes say the procedure is closed over or closed in its creation 
environment.

We can think of ProcVal as a data type; the interface consists of closure, which tells how to 
build a procedure value, and apply-procval, which tells how to apply a procedure value. 
When a procedure is applied, its body is evaluated in an environment that binds the formal 
parameters of the procedure to the arguments of the application. Therefore these procedures 
should satisfy the condition

  (apply-procval (closure ids body env) args)  = (eval-
expression body (extend-env ids args env))

According to the methodology described in section 2.3.2, we can employ a procedural 
representation for procedures by defining closure to have a value that is a procedure that 
expects an argument list.

(define closure  (lambda (ids body env)    (lambda (args)      (eval-
expression body (extend-env ids args env)))))



 

(define apply-procval  (lambda (proc args)    (proc args)))

Alternatively, since closures are the only kind of procedure values in our language, we can define ProcVal as an abstract 
syntax tree representation by writing

(define-datatype procval procval?  (closure    (ids (list-
of symbol?))    (body expression?)    (env environment?)))

In the abstract syntax tree representation for procedures, apply-procval uses cases to take the closure apart and 
then invokes the body of the closure in the appropriately extended environment:

(define apply-
procval  (lambda (proc args)    (cases procval proc      (closure (ids body env)        (eval-
expression body (extend-env ids args env))))))

Now we can see how to modify eval-expression to handle programmer-defined procedures. This client code 
manipulates procedures only through the ProcVal interface, so it is independent of the representation of procedures.

When a proc expression is evaluated, all that is done is to build a closure and return it immediately.

(define eval-expression  (lambda (exp env)    (cases expression exp|     (proc-
exp (ids body) (closure ids body env))      ...)))

The body of the procedure is not evaluated here: it cannot be evaluated until the values of the formal parameters are 
known, when the closure is applied to some arguments.

When an application is evaluated, the operator and the operands are evaluated, and the results are sent to apply-
procval, which knows about the representation of procedures:



 

The operands are also called the actual parameters. These are expressions, and should not be confused with their values, which we consistently 
call the arguments to the procedure, nor should they be confused with the bound variables or formal parameters of the procedure that will be 
bound to them.

The interpreter is shown in figure 3.7. To see how all this fits together, let us consider a simple calculation. In this calculation, we write «exp» to 
denote the abstract syntax tree associated with the expression exp, and we write [x=a, y=b] env in place of (extend-
env '(x y) '(a b) env).

(eval-
expression <<let x = 5                   in let x = 38                          f = proc (y, z) *
(y,+(x,z))                          g = proc (u) +(u,x)                      in (f (g 3) 17)
>>                 env0)= bind x and evaluate the body of the let(eval-
expression <<let x = 38                       f = proc (y, z) *(y,+(x,
z))                       g = proc (u) +(u,x)                   in (f (g 3) 17)
>>                 env1)   where env1 = [x = 5] env0= bind x, f, and g and evaluate the body of the let(eval-
expression <<(f (g 3) 17)>> env2)    where env2 =         [x = 38,          f = (closure (y z) <<*
(y, +(x,z))>> env1),          g = (closure (u) <<+(u,x)>> env1)          ]env1= rule for app-exp in 
eval-expression(let ((proc (eval-expression <<f>> env2))      (args (eval-rands '(<<(g 3)
>> <<17>>) env2)))  (apply-procval proc args))



 

Figure 3.7 Interpreter with user-defined procedures

Before finishing this calculation, let us work on (g 3) in env2:

(eval-expression <<(g 3)>> env2)= rule for app-exp in eval-expression
(let ((proc (eval-expression <<g>> env2))      (args (eval-
rands '(<<3>>) env2)))  (apply-procval proc args))= evaluate the rator 
and the rands(let ((proc '(closure (u) <<+(u,x)
>> env1))      (args '(3)))  (apply-procval proc args))= substitute the 
values of proc and args(apply-procval  '(closure (u) <<+(u,x)
>> env1)  '(3))



 

= definition of apply-procval(eval-expression <<+(u,x)>> [u = 3] env1)= 3 + 5 = 8

Now we can finish the main calculation:

(let ((proc '(closure (y z) <<*(y,+(x,z))
>> env1))      (args '(8 17)))  (apply-procval proc args))= substitute the values of proc 
and args(apply-procval  '(closure (y z) <<*(y,+(x,z))>> env1)  '(8 17))= definition 
of apply-procval(eval-expression <<*(y,+(x,z))>> [y = 8, z = 17] env1)
= 8 * (5 + 17) = 8 * 22 = 176

Exercise 3.19 [ ] Test user-defined procedures with the interpreter of figure 3.7.

Exercise 3.20 [ ] Modify the interpreter to signal an error if a closure is called with the wrong number of arguments.

First-class procedures are extremely powerful. Consider the following program:

let makemult = proc (maker, x)                 if x                 then +(4,(maker maker -
(x,1)))                 else 0in let times4 = proc (x) (makemult makemult x)   in (times4 3)

This program calculates a multiple of 4 by repeated additions, essentially simulating a recursive program.

Exercise 3.21 [ ] Use the tricks of the program above to write a procedure for factorial in the defined language of this section.

Exercise 3.22 [ ] Use the tricks of the program above to write the pair of mutually-recursive procedures, odd and even as in section 
3.6, in the defined language of this section.

In an implementation that uses a ribcage implementation for environments, the lexical address of a variable reference, 
as calculated in section 1.3.2, tells us exactly where in the environment the variable reference will appear: if the 
variable reference v gets lexical address (d p), then the variable will appear in the d-th rib at position p.



 

Exercise 3.23 [ ] Write a lexical-address calculator, like that of exercise 1.31, for the language of this 
section. The calculator should take an abstract syntax tree and produce a similar abstract syntax tree, except 
that every occurrence of (var-exp v) should be replaced by (lexvar-exp v d p), where (d p) is the 
lexical address for this occurrence of the variable v. Add lexvar-exp as a new variant of the data type 
expression. With SLLGEN, an easy way to do this is to add a new production to the grammar. 
Alternatively, write out the define-datatype by hand instead of using sllgen:make-
define-datatypes. (Hint: edit the list produced by sllgen:list-define-
datatypes).

Exercise 3.24 [ ] Instrument the interpreter to illustrate the fact that each variable is found at the position 
predicted by its lexical address. To do this, modify the interpreter to take the output of the lexical-address 
calculator from the preceding exercise. Then modify eval-expression so that it sends to apply-
env both the identifier and the lexical address for each variable reference. The procedure apply-env 
should look up the variable using the identifier in the usual way. It should then compare the lexical address to 
the actual rib and position in which the variable is found, and print an informative message.

A consequence of this observation is that lexically-bound variables need not appear at all in the 
syntax trees processed by the interpreter. One can simply replace each lexically-bound variable 
with its lexical address.

Exercise 3.25 [ ] Implement the language of this section using this idea. Modify the lexical-address 
analyzer of exercise 3.23 so that its output for a variable reference includes the lexical address but not the 
variable name. Then create a nameless-environment abstraction with interface

(empty-nameless-env)(extend-nameless-env vals env)(apply-nameless-
env env depth position)

Applying the procedure apply-nameless-env to env, depth, and position looks up the 
position-th variable in the depth-th rib of env, in the fashion of the procedure apply-env-
lexical of section 2.3.4. Last, modify eval-expression, closure, and apply-
procval to use nameless environments.

Exercise 3.26 [ ] Repeat the preceding exercises for an implementation using flat environments (exercise 
2.23). Modify the lexical-address analyzer to predict where in a flat environment the variable reference will be 
found. The resulting lexical address will be an integer. Modify the interpreter to use these integers as lexical 
addresses, as in the preceding exercise.

Exercise 3.27 [ ] When we build a closure, we have kept the entire environment in the closure. But of course 
all we need are the bindings for the free variables. Modify the interpreter to use the following definition of 
closure:



 

(define closure  (lambda (ids body env)    (let ((freevars (set-diff (free-
vars body) ids)))      (let ((saved-env              (extend-
env                freevars                (map                  (lambda (v)                    (apply-
env env v))                  freevars)                (empty-
env))))        (lambda (args)          (eval-expression body            (extend-env ids args saved-
env)))))))

where set-diff takes the difference of two sets. This is called the flat closure representation. The environment of such a closure consists of 
exactly one rib comprising its free variables and their values. What would the analogous representation look like if we used an abstract syntax tree 
representation?

Exercise 3.28 [ ] Modify the lexical-address analyzer to predict where in the environment of each flat closure each free variable reference will be 
located. The lexical-address analyzer and closure will have to agree on the order in which the free variables appear in the rib. Then modify the 
interpreter to use these lexical addresses instead of variable names.

Exercise 3.29 [ ] Add a new kind of procedure called a traceproc to the language. A traceproc works exactly like a proc, except that it 
prints a trace message on entry and on exit. Use this facility to trace the behavior of the times4 program above.

Exercise 3.30 [ ] Dynamic binding (or dynamic scoping) is an alternative design for procedures, in which the procedure body is evaluated in an 
environment obtained by extending the environment at the point of call. For example in

let a = 3in let p = proc (x) +(x,a)       a = 5   in *(a,(p 2))

the a in the procedure body would be bound to 5, not 3. Modify the interpreter of figure 3.7 to use dynamic binding. Represent defined-language 
procedures with Scheme procedures of the form (lambda (args env) ...). Do these procedures have any free lexical variables?

Exercise 3.31 [ ] Another approach to implementing dynamic binding is to store all environment bindings on a global stack, which pairs variable 
names with their values. Bindings are pushed onto this stack when a procedure is called and popped from the stack when the procedure returns. Modify 
the interpreter of figure 3.7 to



 

implement dynamic binding in this way. How does the efficiency of this binding method compare with lexical 
binding, both when lexical distance analysis is used with lexical binding and when it is not?

Exercise 3.32 [ ] With dynamic binding, recursive procedures may be bound by let; no special mechanism 
is necessary for recursion. This is of historical interest, because in the early years of programming language 
design other approaches to recursion, such as those discussed in section 3.6, were not widely understood. To 
demonstrate recursion via dynamic binding, test the program

let fact = proc (n) add1(n)in let fact = proc (n)                if zero?
(n)                then 1                else *(n, (fact sub1
(n)))   in (fact 5)

using both lexical and dynamic binding. Write the mutually-recursive procedures even and odd as in 
section 3.6 in the defined language with dynamic binding.

Exercise 3.33 [ ] Unfortunately, programs that use dynamic binding may be exceptionally difficult to 
understand. For example, under lexical binding, consistently renaming the bound variables of a procedure can 
never change the behavior of a program: we can even remove all identifiers and replace them by their lexical 
addresses, as in exercise 3.25.For example, under dynamic binding, the procedure proc () a returns the 
value of the variable a in its caller's environment. Thus, the program

let a = 3    p = proc () ain let f = proc (x) (p)       a = 5   in (f 2)

returns 5, since a's value at the call site is 5. What if f's formal parameter were a?

3.6 Recursion

We look now at how recursion may be added to our interpreter. In most languages only procedures 
may be defined recursively. Allowing other possibilities, as in Scheme, is sometimes useful but 
presents additional complications. Therefore we use a variation on Scheme's syntax that restricts 
the right-hand side to proc-like expressions as presented in the grammar:



 

The left-hand side of a recursive declaration is the name of the recursive procedure and a list of 
formal parameters. To the right of the = is the procedure body. Here are a couple of familiar 
examples.

letrec  fact (x) = if zero?(x) then 1 else * (x, (fact sub1(x)))in (fact 6)
letrec  even (x) = if zero? (x) then 1 else (odd sub1
(x))  odd (x)  = if zero? (x) then 0 else (even sub1(x))in (odd 13)

To evaluate a letrec expression, we evaluate the body of the expression in an environment that 
has the desired behavior:

(define eval-
expression  (lambda (exp env)    (cases expression exp      (letrec-
exp (proc-names idss bodies letrec-body)        (eval-expression letrec-
body          (extend-env-recursively            proc-
names idss bodies env)))      ...)))

The complete definition of eval-expression is shown in figure 3.8.

The new procedure extend-env-recursively is added to the environment interface. We 
specify the behavior of (extend-env-recursively proc-names idss bodies 
env) as follows:

Let e' be (extend-env-recursively proc-names idss bodies e). Then

1. If name is one of the names in proc-names, and ids and body are the corresponding 
formal parameter list and procedure body, then (apply-env e' name) = (closure ids 
body e').

2. If not, then (apply-env e' name) = (apply-env e name).



 

Figure 3.8 Interpreter with letrec

We can implement extend-env-recursively in any way that satisfies these requirements, 
including those of section 2.3. Representing environments with the procedural representation of 
section 2.3.2, using letrec itself, we can write extend-env-recursively (figure 3.9).

Given a symbol sym, we first determine if it is among the names used in proc-names. If it is 
present, we return a closure consisting of the corresponding formal-parameter list, the 
corresponding body, and the recursive environment. Otherwise, we look up the symbol in the old 
environment old-env. This implements the behavior specified above.



 

(define extend-env-recursively  (lambda (proc-names idss bodies old-
env)    (letrec      ((rec-env         (lambda (sym)           (let ((pos (rib-find-
position sym proc-
names)))             (if (number? pos)               (closure                 (list-
ref idss pos)                 (list-ref bodies pos)                 rec-
env)               (apply-env old-env sym))))))      rec-env)))

Figure 3.9 Recursive environments

If we represent environments using the abstract syntax representation of section 2.3.3, then we add a new 
variant for this new environment constructor, and move the code above into apply-env. See figure 3.10.

In each of these implementations, we build a new closure each time a procedure is retrieved from the 
environment. This is unnecessary since the environment for the closure is always the same. If we use a 
ribcage representation like that of figure 2.4, we can build the closures only once, by building an 
environment with a circular structure like that of figure 3.11.

Figure 3.12 shows the code that builds the run-time structure of figure 3.11. This takes us back to the 
original two-variant environment data type. To create a recursive environment, we first build a vector to 
hold the values, and then an environment env with a new extended-env-record that contains the list 
of procedure names and the new vector. Then, for each procedure declaration, we create a closure containing 
the procedure's formal parameters, its body, and env, and we insert this closure into the corresponding 
position in the vector. This creates a structure like that shown in figure 3.11. Last, we return this new 
environment. The procedure iota takes a positive integer n and builds a list of integers from 0 to n − 1.

Exercise 3.34 [ ] Extend exercise 3.25 to handle letrec.Exercise 3.35 [ ] Implement a version of letrec 
that builds each closure at most once. If the closure is never retrieved, it should never be built.



 

Figure 3.10 Abstract syntax tree representation of recursive environments



 

Figure 3.11 Circular environment structure for even and odd

(define extend-env-recursively  (lambda (proc-names idss bodies old-
env)    (let ((len (length proc-names)))      (let ((vec (make-
vector len)))        (let ((env (extended-env-record                     proc-
names vec old-env)))          (for-
each            (lambda (pos ids body)              (vector-
set! vec pos (closure ids body env)))            (iota len) idss bodies)          env)))))

Figure 3.12 Circular data structure representation of recursive environments



 

Exercise 3.36 [ ] Write a program that behaves differently under the implementation of figure 3.12 than it 
does under the other two implementations shown in this section. (Hint: retrieve a recursive procedure from an 
environment twice, and use eq? (exercise 3.17) to see if the same closure is returned.) How can this 
difference be reconciled with the contention that all three implementations satisfy the specification of 
extend-env-recursively?

3.7 Variable Assignment

We next extend our language to allow assignments to variables. This means that each identifier 
must denote the address of a mutable location in memory. We call such an address a reference, 
and it is the contents of these references that are modified by variable assignment. Thus denoted 
values are references whose contents are expressed values:

References or locations are sometimes called L-values. This reflects their association with 
variables appearing on the left-hand side of assignment statements. Analogously, expressed 
values, such as the values of the right-hand side expressions of assignment statements, are known 
as R-values.

We choose the concrete syntax

This adds a new variant to our data type for expressions. The new variant can be written as

   (varassign-exp     (id symbol?)     (rhs-exp expression?))

What is the difference between assignment and binding? A binding creates a new association of a 
name with a value, while an assignment changes the value of an existing binding. Binding is about 
the association of names with values; assignment is about the sharing of values between different 
procedures. When a binding is shared by multiple procedures, a change by one is seen by all. 
Consider the following program in the defined language:



 

let x = 0in letrec     even () = if zero? (x)               then 1               else let  d = set x = sub1
(x)                    in  (odd)     odd ()  = if zero? (x)               then 0               else let  d = set x = sub1
(x)                    in  (even)    in let d = set x =  13 in (odd)

Here the idiom let d = exp in exp where d is a dummy variable, is used to accomplish sequencing (exercise 3.39).

The two procedures even and odd share the variable x. They communicate not by passing data explicitly, as the similar program of section 3.6 does, but 
by changing the state of the variable they share. This is convenient when two procedures might share many quantities; one needs to assign only to the few 
quantities that change from one call to the next. Similarly, one procedure might call another procedure not directly but through a long chain of procedure 
calls. They could communicate data directly through a shared variable, without the intermediate procedures needing to know about it. Thus 
communication through a shared variable can be a kind of information hiding.

For example, consider the redirection of input and output. I/O operations usually use "standard" input and output ports (connected, say, to a keyboard and 
the display), unless a specific port is indicated. But we may want all the output generated as a result of invoking a particular procedure call, such as (p 1 
2), to be directed to a port associated with a new file, say port, instead of the standard output port. How could the output procedure know what port to 
use? It would be necessary to pass the port as an argument to p. The procedure p would then have to pass the port to any procedures it calls that might do 
output, and these procedures would have to do the same. Some of these procedures may not do any output directly, but they must still receive and pass on 
the output port if any procedure they call does output, either directly or by calling other procedures. This seems to violate modularity, especially since 
there may be other parameters to pass, such as line lengths, fonts, etc. If the output procedure were constructed to obtain its port and other parameters from 
non-local variables, then the procedure p could communicate this information directly by assigning to these variables, and the intermediate procedures 
need not be concerned.



 

Another use of assignment is to create hidden state directly through the use of private variables. 
Consider the following program:

let g = let count = 0        in proc ()             let d = set count = add1
(count)             in countin +((g),(g))

Here the procedure g keeps a private variable that stores the number of times g has been called, so 
this program evaluates to 3. We use a similar technique to generate symbols in section 8.4.

For our example language, we choose to create a new reference for each formal parameter at every 
procedure call. This policy is known as call-by-value. Under call-by-value, when we assign to a 
formal parameter, the assignment is local to the procedure. For example,

let x = 100in let p = proc (x) let d = set x = add1
(x)                    in x   in +((p x),(p x))

returns 202, because a new reference is created for x at each of the procedure calls. Thus, at each 
procedure call, the assignment affects only the inner binding. This is in contrast to the preceding 
example, in which all the calls to the procedure g shared the same variable count.

In order to implement variable assignment, we introduce the reference data type. The 
operations on this data type are deref and setref!, which access or store the value in the 
mutable location.

We begin with a simple implementation of references. We assume the familiar environment 
representation with a value vector in each rib. References are then elements of rib vectors, which 
are assignable using vector-set!. Since a vector element is not a Scheme object, we represent 
a reference as a data type containing the vector and the position of the desired L-value within this 
vector.

(define-datatype reference reference?  (a-
ref    (position integer?)    (vec vector?)))

A picture of a reference is shown in figure 3.13. The operations for this implementation are 
deref and setref!. We define these in terms of



 

Figure 3.13 Representation of references

primitive-deref and primitive-setref! because we reuse the latter two procedures in 
our later implementations of references.

(define primitive-deref  (lambda (ref)    (cases reference ref      (a-
ref (pos vec) (vector-ref vec pos)))))(define primitive-
setref!  (lambda (ref val)    (cases reference ref      (a-
ref (pos vec) (vector-set! vec pos val)))))
(define deref  (lambda (ref)    (primitive-deref ref)))
(define setref!  (lambda (ref val)    (primitive-setref! ref val)))

Exercise 3.37 [ ] Add to the interface for references a constructor newrefs, which takes a list of values 
and returns a list of references; each reference initially contains the corresponding value as its contents. Why 
would an interface containing newrefs as a constructor be better than one containing a-ref?



 

(define apply-env  (lambda (env sym)    (deref (apply-env-ref env sym))))
(define apply-env-
ref  (lambda (env sym)    (cases environment env      (empty-env-
record ()        (eopl:error 'apply-env-
ref "No binding for ~s" sym))      (extended-env-
record (syms vals env)        (let ((pos (rib-find-
position sym syms)))          (if (number? pos)            (a-
ref pos vals)            (apply-env-ref env sym)))))))

Figure 3.14 apply-env and apply-env-ref

Exercise 3.38 [ ] Why is it that we do not need to include a constructor in the interface for references?

We revisit our environment abstraction so we can make use of references. We assume that the 
denoted values in an environment are of the form Ref(X) for some set X. We reveal this structure 
by introducing the operation apply-env-ref into the interface. The procedure apply-env-
ref is very similar to the previous definition of apply-env, but when it finds the matching 
identifier, it returns the reference instead of its value. The procedure apply-env can then be 
defined in terms of apply-env-ref and deref. See figure 3.14.

To implement variable assignment, we now simply add the following clause to eval-
expression:

       (varassign-exp (id rhs-
exp)         (begin           (setref!             (apply-env-
ref env id)             (eval-expression rhs-exp env))           1))

We explicitly return 1 because the return value of setref! is unspecified, and we must always 
return an expressed value.



 

Figure 3.15 Interpreter with variable assignment using call-by-value



 

Exercise 3.39 [ ] Add the expression begin to the language.

A begin expression may contain one or more subexpressions separated by semicolons. These are evaluated 
in order and the value of the last is returned. Implement this by modifying eval-expression.Exercise 
3.40 [ ] Define a form to be a definition or expression using the following concrete syntax

This syntax intentionally prevents definitions (as opposed to local declarations) from appearing inside 
expressions.Modify the read-eval-print loop so that it reads a sequence of forms, with definitions performed 
and expressions evaluated as they are encountered. A definition is performed by first evaluating the given 
expression in the initial environment. If the initial environment already contains a binding for the given 
variable, the expression's value is assigned to this binding as if by a top-level assignment. If the given variable 
is not bound in the initial environment, the initial environment should be extended to bind the variable to a 
location containing the expression's value; this will require some changes in the environment abstraction. After 
performing a definition, the next prompt is printed without printing any value. After evaluation of an 
expression, the value of the expression should be printed, as usual, before prompting for the next definition or 
expression. Implement and test even and odd (from section 3.6) as definitions.Exercise 3.41 [ ] 
Another design for assignment is to have locations become expressed values, and have allocation, 
dereferencing, and assignment be explicit in the program. Then we would have

Modify the interpreter of figure 3.15 to use this set of expressed values, with new primitives 
cell, contents, and setcell for creating, dereferencing, and mutating cells as in exercise 
2.26. In this language, our procedure with a private counter (page 100) would look something like

let g = let count = cell
(0)        in proc ()             begin               setcell(count, add1
(contents(count)));               contents(count)             endin +((g),
(g))



 

Exercise 3.42 [ ] Add arrays to this language. Introduce new primitives array, arrayref, and arrayset that create, dereference, and update arrays. This leads to

where the first occurrence of Ref can be a different implementation of references (perhaps using the fact that a Scheme array is already a sequence of references) than the one described in this section. What should be the result of the following program?

let a = array(2)    p = proc (x)          let  v = arrayref(x,1)          in arrayset(x,1,add1(v))in begin     arrayset(a,1,0);     p (a);     p (a);     arrayref(a,1)   end

Here array (2) is intended to build an array of size 2.

Exercise 3.43 [ ] Modify the interpreter of figure 3.15 by defining primitives deref and setref using deref and setref!, respectively. Then add a new production

This differs from the language of exercise 3.41, since references are only of variables. This allows us to write familiar programs such as swap within our call-by-value language. What should be the value of this expression?

let a = 3    b = 4    swap = proc (x,
y)             let temp = deref (x)             in begin                  setref (x, deref (y));                  setref (y, temp)                endin begin     (swap ref a ref b);     -
(a, b)   end

What are the expressed and denoted values of this language?



 

Exercise 3.44 [ ] Now that variables are mutable, we can build recursive procedures by assignment. For example

letrec times4 (x) = if x                    then + (4,(times4 sub1
(x)))                    else 0in (times4 3)

can be replaced by

let times4 = 0in begin     set times4 = proc (x)                    if x                    then + (4,
(times4 sub1(x)))                    else 0;     (times4 3)   end

Trace this by hand and verify that this translation works.

Exercise 3.45 [ ] In the interpreter of figure 3.15, all variable bindings are mutable (as in Scheme). Another alternative is to allow both mutable 
and immutable variable bindings:

Variable assignment should work only when the variable to be assigned to has a mutable binding. Dereferencing occurs implicitly when the denoted 
value is a reference.Modify this interpreter and its accompanying environment abstraction so that let introduces immutable bindings, but 
letmutable introduces mutable bindings. The letmutable expression is a new special form, with a syntax similar to the let form.

Exercise 3.46 [ ] Adapt the interpreter of figure 3.15 to use the representation of closures from exercise 3.27, in which only the bindings of free 
variables are kept in the closure.

Exercise 3.47 [ ] We suggested earlier the use of assignment to make a program more modular by allowing one procedure to communicate 
information to a distant procedure without requiring intermediate procedures to be aware of it. Very often



 

such an assignment should only be temporary, lasting for the execution of a procedure call. Add to the 
language a facility for dynamic assignment (also called fluid binding) to accomplish this. Use the production

The effect of the setdynamic expression is to assign temporarily the value of rhs-exp to id, 
evaluate body, re-assign id to its original value, and return the value of body. The identifier id must 
already be bound. For example, in

let x = 4in let p = proc (y) + (x,
y)   in + (setdynamic x = 7 during (p 1),         (p 2))

the value of x, which is free in procedure p, is 7 in the call (p 1), but is reset to 4 in the call (p 2), so 
the value of the expression is 8 + 6 = 14.

Exercise 3.48 [ ] Our understanding of assignment, as expressed in the interpreter of figure 3.15, depends 
on the semantics of side effects in Scheme. In particular, it depends on when these effects take place. If we 
could model assignment without using Scheme's side-effecting operations, our understanding would not be 
dependent on Scheme in this way. We can do this by modeling the state of a program not as a collection of 
mutable locations but as a function, called the store. The domain of the store function is some arbitrary set of 
addresses (say the nonnegative integers) that represents locations, and its range is the set of expressed values. 
Mutation of a location in the store is then modeled by extending this function to associate the location with the 
new value. This new association supersedes any earlier associations for the same location. Assume that each 
invocation of (location) produces an unused integer. Alternatively, model the store as an abstract syntax 
tree and use the "length" of the store to retrieve the next unused location.In order for the new store to be 
used in subsequent evaluation, it must be returned by eval-expression and then passed as an 
additional argument to interpreter procedures (eval-expression, eval-rands, apply-
procval, etc.) that might need it. Consider figure 3.16. Every procedure that might modify the store 
returns not just its usual value but an answer consisting of the value and a new store. The trickiest 
procedure to modify is eval-rands. It can no longer just use map. Instead, it must evaluate the operands 
in some specific order, with the store resulting from each evaluation being used in the next evaluation. 
Complete this definition of eval-expression.

3.8 Parameter-Passing Variations

The language design of section 3.7, in which formal parameters are bound to locations of operand 
values, has used call-by-value. This is the most commonly used form of parameter passing, and is 
the standard against which



 

(define-datatype answer answer?  (an-
answer    (val expval?)    (store store?)))(define eval-
expression  (lambda (exp env store)    (cases expression exp      (var-
exp (id)        (an-answer (apply-store store (apply-
env env id))          store))      (varassign-exp (id rhs-
exp)        (cases answer (eval-expression rhs-exp env store)          (an-
answer (val new-store)            (an-answer 1              (extend-
store (apply-env env id) val store)))))      (if-exp (test-exp true-
exp false-exp)        (cases answer (eval-expression test-
exp env store)          (an-answer (val new-store)            (if (true-
value? val)              (eval-expression true-exp env new-
store)              (eval-expression false-exp env new-
store)))))      ...)))

Figure 3.16 Store-passing interpreter for exercise 3.48

other parameter-passing mechanisms are usually compared. In this section we explore alternative 
parameter-passing mechanisms.

Consider the following expression:

let a = 3    p = proc (x)  set x = 4in begin (p a); a end

Under call-by-value semantics, the denoted value associated with x is a reference that initially 
contains the same value as the reference associated with a, but these references are distinct. Thus 
the assignment to x has no effect on the contents of a's reference, so the value of the entire 
expression is 3.

With call-by-value semantics it is a big help to know that when a procedure assigns a new value to 
one of its parameters, this cannot possibly be seen by its caller. Of course, if the parameter passed 
to the caller contains a



 

reference to a mutable location, as in exercise 3.42, and the procedure modifies this location, the resulting modification will still be seen by the caller in subsequent uses of the reference.

Though this isolation between the caller and callee is generally desirable, there are times when it is valuable to allow a procedure to be passed variables with the expectation that they will be 
assigned by the procedure. This may be accomplished by passing the procedure a reference to the location of the caller's variable, rather than the contents of the variable. This parameter-passing 
mechanism is called call-by-reference. If an operand is simply a variable reference, a reference to the variable's location is passed. The formal parameter of the procedure is then bound to this 
location. If the operand is some other kind of expression, then the formal parameter is bound to a new location containing the value of the operand, just as in call-by-value. Using call-by-reference 
in the above example, the assignment of 4 to x has the effect of assigning 4 to a, so the entire expression would return 4, not 3.

One common use of call-by-reference is to return multiple values. A procedure can return one value in the normal way and assign others to parameters that are passed by reference. For another sort 
of example, consider the common programming need for swapping the values in two variables:

let a = 3    b = 4    swap = proc (x,
y)             let temp = x             in begin                  set x = y;                  set y = temp                endin begin     (swap a b);     -
(a,b)   end

Under call-by-reference, this swaps the values of a and b, so it returns 1. If this program were run with our existing call-by-value interpreter, however, it would return -1, because the assignments 
inside the swap procedure then have no effect on variables a and b.

Under call-by-reference, identifiers still denote references to expressed values, just as they did under call-by-value:



 

The only change occurs when new references are created. Under call-by-value, a new reference is 
created for every evaluation of an operand; under call-by-reference, a new reference is created for 
every evaluation of an operand other than a variable.

Because call-by-value creates a new location for every operand in a procedure application, we 
could put the values of all the operands in a vector, and have apply-env-ref create a reference 
to the location at variable-lookup time. Under call-by-reference, however, we will need a new 
location for some operands and not for others, so we need a different representation for references.

For our implementation of call-by-reference, we will use the implementation of references shown 
in figure 3.17. A reference will be, as before, a reference to a location within a vector. But the 
vector, instead of containing expressed values, will contain either expressed values or references 
to expressed values. We call these two kinds of targets direct targets and indirect targets, 
respectively. A direct target corresponds to the behavior of call-by-value, in which a new location 
is created; an indirect target corresponds to the new behavior of call-by-reference, in which no 
new location is created. The new definitions of deref and setref! look at the kind of target to 
determine the expressed value to return or the location to mutate.

The procedures extend-env and apply-env-ref are unchanged: extend-env will take a 
list of targets and return a vector containing those targets, and apply-env-ref looks up an 
identifier and creates a reference to the location containing the appropriate target.

Now we can implement call-by-reference. We consider each place where subexpressions are 
evaluated. For primitive applications, we simply need to evaluate the subexpressions and pass the 
values to apply-primitive, so in eval-expression we write

       (primapp-exp (prim rands)         (let ((args (eval-primapp-exp-
rands rands env)))           (apply-primitive prim args)))

where eval-primapp-exp-rands is defined by

(define eval-primapp-exp-
rands  (lambda (rands env)    (map (lambda (x) (eval-
expression x env)) rands)))

For let-bound variables, we choose to retain the call-by-value behavior, so in eval-
expression we write



 

(define-datatype target target?  (direct-target    (expval expval?))  (indirect-
target    (ref ref-to-direct-target?)))
(define expval?  (lambda (x)    (or (number? x) (procval? x))))(define ref-to-
direct-
target?  (lambda (x)    (and      (reference? x)      (cases reference x        (a-
ref (pos vec)          (cases target (vector-ref vec pos)            (direct-
target (v) #t)            (indirect-target (v) #f)))))))
(define deref  (lambda (ref)    (cases target (primitive-deref ref)      (direct-
target (expval) expval)      (indirect-
target (ref1)        (cases target (primitive-deref ref1)          (direct-
target (expval) expval)          (indirect-target (p)            (eopl:
error 'deref              "Illegal reference: ~s" ref1)))))))
(define setref!  (lambda (ref expval)    (let ((ref (cases target (primitive-
deref ref)                 (direct-target (expval1) ref)                 (indirect-
target (ref1) ref1))))      (primitive-setref! ref (direct-target expval)))))

Figure 3.17 Implementation of references for call-by-reference



 

      (let-exp (ids rands body)        (let ((args (eval-let-exp-
rands rands env)))          (eval-expression body (extend-
env ids args env))))

where eval-let-exp-rands and eval-let-exp-rand are defined by

(define eval-let-exp-rands  (lambda (rands env)    (map (lambda (x) (eval-
let-exp-rand x env)) rands)))(define eval-let-exp-
rand  (lambda (rand env)    (direct-target (eval-expression rand env))))

For procedure applications, we continue to evaluate each operand using eval-rand.

(define eval-rand  (lambda (rand env)    (cases expression rand      (var-
exp (id)        (indirect-target          (let ((ref (apply-env-
ref env id)))            (cases target (primitive-
deref ref)              (direct-
target (expval) ref)              (indirect-
target (ref1) ref1)))))      (else        (direct-target (eval-
expression rand env))))))

Here we must be a bit more careful. If the operand is a non-variable, then we create a new 
location, as before, by returning a direct target. If the operand is a variable, it denotes a location 
containing an expressed value, so we want to return an indirect target pointing to that location. 
This is a bit trickier than it first appears. If a variable is bound to a location containing a direct 
target (which must contain an expressed value, like 5), then a reference to the location is returned 
as an indirect target. But, if the variable is bound to another reference, then that reference is 
returned. This maintains the invariant that a reference contains either an expressed value or a 
reference to an expressed value.

We show the operation of eval-rand in figure 3.18 where we depict the value ribs in the 
environment of the innermost procedure body in the program



 

Figure 3.18 Environments built by call-by-reference

(proc (t, u, v, w)                    % call this p1   (proc (a, b)                       % call this p2      (proc (x, y, z)                 % call this p3         set y = 13       a b 6)   3 v)
5 6 7 8)

First the procedure p1 is applied to 5, 6, 7, and 8, yielding the value vector at the bottom of the figure. Next p2 is applied to the operands 3 and v, yielding the value vector in the middle. This vector contains 3 and a reference to the location 
containing 7. In each vector element, there is a direct-target wrapped around each expressed value and an indirect-target wrapped around each reference; these are not depicted to preserve the clarity of the picture. Finally, p3 is 
invoked on a, b, and 6. The variable a contains a direct target, so x is bound to an indirect target containing a pointer to a. The variable b contains an indirect target, so y is bound to an indirect target containing a pointer to the target of b. Last, 6 
is an expressed value, so z is bound to a direct target containing 6.

Exercise 3.49 [ ] Redraw figure 3.18 using the format of the left-hand side of figure 3.13. Include the direct-target and indirect-target data structures.



 

Exercise 3.50 [ ] Implement the call-by-reference interpreter and test it with examples including primitive 
application and letrec.

Exercise 3.51 [ ] Rewrite the preceding definition of eval-rand so that targets are reused rather than 
reconstructed whenever possible.

Exercise 3.52 [ ] More than one call-by-reference parameter may refer to the same location, as in the 
following program.

let b = 3    p = proc (x,
y)          begin            set x = 4;            y          endin (p b b)

This yields 4 since both x and y refer to the same location, which is the binding of b. This phenomenon is 
known as variable aliasing. Here x and y are aliases (names) for the same location. Aliasing makes it very 
difficult to understand programs. Generally, we do not expect an assignment to one variable to change the 
value of another. Virtually all rules for reasoning formally about programs are invalid in the presence of 
aliasing.

Test the call-by-reference interpreter with programs that demonstrate aliasing.

Exercise 3.53 [ ] In languages supporting call-by-reference it is usual for call-by-value to be supported 
also, with a method for specifying which is to be used for each formal parameter. Extend the implementation 
of this section in this way.

Exercise 3.54 [ ] Most languages support arrays, in which case array references are generally treated like 
variable references under call-by-reference. That is, if an operand is an array reference, the location referred to, 
rather than its contents, is passed to the called procedure. This allows, for example, a swap procedure to be 
used in commonly occurring situations in which the values in two array elements are to be exchanged. Add 
array primitives like those of exercise 3.42 to the call-by-reference language of this section, and extend 
eval-rand to handle this case, so that, for example, a procedure application like (swap 
(arrayref a i) (arrayref a j)) will work as expected.

Exercise 3.55 [ ] Call-by-value-result is a variation on call-by-reference. In call-by-value-result, the actual 
parameter must be a variable. When a parameter is passed, the formal parameter is bound to a new reference 
initialized to the value of the actual parameter, just as in call-by-value. The procedure body is then executed 
normally. When the procedure body returns, however, the value in the new reference is copied back into the 
reference denoted by the actual parameter. This may be more efficient than call-by-reference because it can 
improve memory locality. Implement call-by-value-result and test it with a program that produces different 
answers using call-by-value-result and call-by-reference.



 

We now turn to a very different form of parameter passing, called lazy evaluation. Sometimes in a given call a 
procedure never refers to one or more of its formal parameters. In this case time devoted to evaluating the 
corresponding operands is wasted. It may even be that evaluation of such an operand would result in an error or 
never terminate. For example, were it not for such problems, if could be a procedure, instead of having to be a 
syntactic form.

In a language such as Scheme that supports first-class procedures, one can delay (perhaps indefinitely) the 
evaluation of an operand by encapsulating it as the body of a thunk, a procedure of no arguments. Whenever a 
variable is referenced, the corresponding procedure must be invoked. The actions of forming thunks and 
evaluating them are called freezing and thawing, respectively.

A few languages support a parameter-passing mechanism called lazy evaluation that automates this technique. 
Lazy evaluation mechanisms may differ in how they handle multiple references to the same parameter. A naive 
approach would invoke the thunk every time the parameter is referred to. This policy is called, for historical 
reasons, call-by-name. In the absence of side effects this is a waste of time, since the same value is returned each 
time. A more sophisticated approach, called call-by-need, records the value of each thunk the first time it is 
invoked, and thereafter refers to the saved value instead of re-invoking the thunk. This is an example of a more 
general technique known as memoization.

In the absence of side-effects, call-by-name and call-by-need always give the same answer. In the presence of 
side-effects, however, it is easy to distinguish these two mechanisms. Consider, for example, the expression

let g = let count = 0        in proc ()             begin               set count = add1
(count);               count             endin (proc (x) +(x,x)    (g))

The procedure g returns the number of times it is called. Under call-by-name each reference to the variable x 
invokes g, so the first x evaluates to 1, the second x evaluates to 2, and the result is 3. Under call-by-need, g is 
invoked only once, for the first reference to x, so both occurrences of x evaluate to 1, and the result is 2.



 

An attraction of lazy evaluation in all its forms is that in the absence of side-effects it supports 
reasoning about programs in a particularly simple way. The effect of a procedure call can be 
modeled by replacing the call with the body of the procedure, with every reference to a formal 
parameter in the body replaced by the corresponding operand. This evaluation strategy is the basis 
for the lambda calculus, in which it is referred to as β-reduction. (See exercise 2.12.) In other 
languages it is sometimes called the copy rule.

Even with call-by-need there can be considerable overhead associated with so much freezing and 
thawing activity. It is, however, possible to reduce this overhead to often-acceptable levels, 
primarily by not making thunks when it can be proved that the result will not be changed.

A more important reason why call-by-name is not popular is that it generally makes it difficult to 
determine the flow of control (order of evaluation), which in turn is essential to understanding a 
program with side effects. On the other hand, if there are no side effects, the flow of control does 
not affect the result of a program, so this is not a problem. Thus lazy evaluation is popular in 
purely-functional programming languages (those with no side-effects), and rarely found elsewhere.

We now add lazy evaluation to our language. As before, variables denote references to expressed 
values:

We implement lazy evaluation by extending our data type of references to add a third kind of 
target, called a thunk target. A thunk target is like a direct target, except that instead of containing 
an expressed value it contains a thunk that evaluates to an expressed value. If deref is given a 
reference containing a thunk (either as a direct or indirect target), it evaluates the thunk using 
eval-thunk, which evaluates the expression contained in the thunk and returns the 
corresponding expressed value; further, if the system is using call-by-need, eval-thunk updates 
the location containing the thunk to contain instead a direct target with the expressed value. See 
figures 3.19 and 3.20.

In eval-rand we recognize literals and procedures and do not bother to freeze them, since they 
evaluate quickly. We also give special treatment to operands that are variables, as in call-by-
reference and we treat thunk targets in the same way that we treat direct targets. Last and most 
important, all other operands are frozen by creating a thunk that delays their evaluation until 
needed (figure 3.21). Thus, under call-by-need, in the expression



 

Figure 3.19 Implementation of references for call-by-name and call-by-need (part 1)

(proc (a, b)   (proc (x)      (proc (y)         (proc (z) + (+(x,y),
z) y)       x)   +(a, b))15 20)

the operand + (a, b) gets evaluated only when the first variable is referenced in + (+ (x,
y),z), regardless of which variable is evaluated first, and it is evaluated only once. Each of the 
other two variables refers to the same already-evaluated thunk.

Exercise 3.56 [ ] Implement the call-by-need interpreter, but leave if out of the language syntax and 
implement it as a primitive procedure.

Exercise 3.57 [ ] Revise the call-by-need interpreter of the previous exercise so that it becomes a call-by-
name interpreter. Then include variable asignment. Test it with a program that uses assignment in such a way 
that two references to the same parameter return different values.



 

Figure 3.20 Implementation of references for call-by-name and call-by-need (part 2)

Exercise 3.58 [ ] Add let to the call-by-need interpreter. Use a test program that demonstrates that this 
let is lazy.

Exercise 3.59 [ ] Add strictlet to the call-by-need interpreter. This is similar to the lazy let of 
exercise 3.58, but forces the evaluation of each of its bindings.

Exercise 3.60 [ ] When is it possible to avoid invoking indirect-target from within eval-
rand?



 

Figure 3.21 eval-rand for call-by-need

let conz = proc (x, y) proc (m) if m then x else y    caz = proc (b) (b 1)    cdz = proc (b) (b 0))
in let lz = (conz random (10) 0)   in let u = (caz lz)      in zero?(-((caz lz),u))

Figure 3.22 Example for exercise 3.61

Exercise 3.61 [ ] The power of lazy evaluation is greatly enhanced in the presence of primitive data constructors that do not thaw one or 
more of their arguments until their value is extracted from the structure. One way to accomplish this is to represent the data constructors as 
procedures. The program in figure 3.22 illustrates this approach by defining a lazy version of cons, with corresponding car and cdr 
operations. With call-by-need semantics, the answer is always true, because u and (caz lz) will always be bound to the first answer 
returned by random (10). With call-by-name semantics, there is a good chance that the result will be false, since the calls to u and 
(caz lz) in zero? (- ((caz lz), u)) will each invoke random (10), and there is a reasonably good chance that they 
will not yield the same random value.

Add conz, caz, cdz and random as primitives.



 

3.9 Statements

So far our languages have been expression-oriented: the primary syntactic category of interest has been 
expressions, and we have primarily been interested in their values. In this section we extend our 
interpreter to model a simple statement-oriented language.

In our statement language, the expressed values are integers and ProcVals; the denoted values are 
locations containing expressed values. The syntax of the language is given in figure 3.23. Here 
<expression> refers to the language of expressions of section 3.7. The informal semantics is 
straightforward. A program is a statement. A program does not return a value, but works by printing. 
Assignment statements work in the usual way. A print statement evaluates its actual parameter and 
prints the result. The compound, if, and while statements work in the usual way. Tests use the same 
convention about truth as does the language of section 3.3: 0 counts as false and all other values count 
as true. A block statement binds each of the declared identifiers to an uninitialized location and then 
executes the body of the block. The scope of these bindings is the body. Here are some examples.

var x,y; {x = 3; y = 4; print (+ (x,y))}var x,y,
z; {x = 3; y = 4; z = 0;              while x do {z = + (z, y); x = sub1
(x)};              print (z)}
var x; {x = 3; print (x);        var x; {x = 4; print (x)};        print (x)}
var f, x; {f = proc (x, y) * (x, y);           x = 3;           print ((f 4 x))}

The first example prints 7. The second example prints 12 and illustrates a while loop, where its 
statement is executed so long as its expression is true. The third example prints 3, then 4, and then 3 
again and shows the scoping of the block statement. The fourth example prints 12 and demonstrates the 
interaction between statements and expressions. A procedure value is created and stored in the variable 
f. In the last line, this procedure is applied to the actual parameters 4 and x; since x is bound to a 
location, it is dereferenced to obtain 3. Our syntax requires the two sets of parentheses here: the outer 
set are from the print-statement production and the inner ones are from the app production for 
expressions.



 

Figure 3.23 Grammar for language of statements

It is straightforward to implement an interpreter for this language. See figure 3.24. As usual, we 
follow the grammar, writing one procedure for each nonterminal. Since programs and statements 
are executed for their effect rather than evaluated for their value, we call these procedures 
execute-program and execute-statement. In the code for compound statements, we 
rely on the fact that the Scheme procedure for-each is guaranteed to process its second 
argument from left to right. In the while statement, we use a one-armed if to avoid having to 
return an arbitrary value.

Exercise 3.62 [ ] Add read statements of the form read ( <identifier> ) to this language. This statement 
reads a nonnegative integer from the input and stores it in the given variable.

Exercise 3.63 [ ] A do-while statement is like a while statement, except that the test is performed 
after the execution of the body. Add do-while statements to the interpreter of figure 3.24.



 

Exercise 3.64 [ ] Extend the block statement to allow variables to be initialized. In the solution, does the 
scope of a variable include the initializer for variables declared later in the same block statement?

Exercise 3.65 [ ] Extend the block statement to allow a procedure to be declared in a block, and add a 
statement that calls a procedure with actual parameters. A procedure body should be within the scope of any 
variables declared earlier in the same block statement.

Exercise 3.66 [ ] Extend the solution to the previous exercise so that procedures declared in a single 
block are mutually recursive. Feel free to restrict the language so that all the variable declarations in a block 
are followed by all the procedure declarations.

Exercise 3.67 [ ] Extend the language of the last exercise to include subroutines. In our usage a subroutine 
is like a procedure, except that it does not return a value and its body is a statement, rather than expression. 
Also, add subroutine calls as a new kind of statement and extend the syntax of blocks so that they may be used 
to declare both procedures and subroutines. How does this affect the denoted and expressed values? What 
happens if a procedure is referenced in a subroutine call, or vice versa?

Further Reading

The wide use of interpreters as a vehicle for explaining the behavior of programming languages 
dates back to (McCarthy, 1960; 1965), which uses a metacircular interpreter (an interpreter written 
in the defined language itself) as an illustration of the power of Lisp. Our interpreters are not 
metacircular, but the concept of metacircularity has been thoroughly explored in (Smith, 1982; 
1984), which characterizes metacircular interpreters as an infinite tower of interpreters.

Fortran (Backus et al., 1957) was the first language to use call-by-reference, Algol 60 (Naur et al., 
1963) was the first language to use call-by-name, and Haskell (Hudak et al., 1990) was the first 
practical language to use call-by-need. (Plotkin, 1975) shows how to model call-by-value and call-
by-name in the lambda calculus.



 

(define execute-program  (lambda (pgm)    (cases program pgm      (a-
program (statement)        (execute-statement statement (init-env))))))
(define execute-
statement  (lambda (stmt env)    (cases statement stmt      (assign-
statement (id exp)        (setref!          (apply-env-
ref env id)          (eval-expression exp env)))      (print-
statement (exp)        (write (eval-
expression exp env))        (newline))      (compound-
statement (statements)        (for-
each          (lambda (statement)            (execute-
statement statement env))          statements))      (if-
statement (exp true-statement false-statement)        (if (true-
value? (eval-expression exp env))          (execute-statement true-
statement env)          (execute-statement false-
statement env)))      (while-
statement (exp statement)        (let loop ()          (if (true-
value? (eval-expression exp env))            (begin              (execute-
statement statement env)              (loop)))))      (block-
statement (ids statement)        (execute-
statement statement          (extend-env ids ids env)))      )))

Figure 3.24 Interpreter for the language of statements
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4 Types

The data that programs manipulate come in many types: integers, characters, procedures, lists, etc. 
Some operations are appropriate on some types of values, and others are not. An attempt to apply 
an operation to inappropriate data is called a type error. In this chapter we show the same ideas we 
use to interpret programs can be used to analyze our programs to ensure that no type error can 
occur during execution.

In section 4.1 we explore some of the subtleties in determining whether or not an operation is 
appropriate, and outline the major approaches for dealing with inappropriate operations. The 
remainder of this chapter deals with the most important of those approaches, static typing. In 
section 4.2 we consider type checking, a simple design for static typing in which the programmer 
must supply key type information for the type analyzer. In section 4.3 we show how type analysis 
can be used to enforce abstraction boundaries of the sort considered in section 2.1. Last, in section 
4.4 we explore type inference, a strategy in which the analyzer deduces the type of each variable 
on the basis of its use in the program.

4.1 Typed Languages

Typed languages typically approach the problem of type analysis as follows:

1. They define a set of types for the language, and we define what it means for an expressed value 
v to be of type t.

2. An analysis step is introduced into the language-processing model (figure 3.1). The analyzer 
assigns a type to each expression in the program. Usually, the goal is to do this in such a way that 
if expression e is assigned



 

type t, then whenever e is executed, its value will be of type t. If the type system has this property, 
we say that it is sound.

3. As it works, the analyzer inspects each invocation of an operation in the program. Each operand 
of the operation is an expression of some type, and therefore we know that the value of that 
operand will be of that type. If the arguments are not known to be of the appropriate types, we say 
that this invocation of an operation is a potential type error. The specification of the kinds of 
errors which are to be detected in this way is part of the design of the language.

4. If type errors are detected, the analyzer can take some action, which is typically also part of the 
language design. It can refuse to execute the program, or it can apply some corrective measures.

Each of these steps allows a variety of design choices. The first issue is what the types are, 
whether a value can have more than one type, and if so whether that type can be determined 
readily at run time. In some languages, every run-time value includes a tag (or some other run-
time information) to indicate its type. This is called latent or dynamic typing. Scheme is a latently-
typed language: every value in Scheme has a tag to indicate its type. These tags are checked by 
number?, string?, etc. Similarly, in our earlier languages we arranged our data 
representations to distinguish procedures from other values, and we had a run-time check to 
prevent apply-procval from trying to apply a value that was not a procedure.

In a language with dynamic typing, one can tell at run time when an operation is appropriate or 
inappropriate: simply check the tags. One shortcoming of dynamic typing is that inserting and 
checking the tags can add run-time overhead. Clever design of data structures can minimize this 
overhead.

A more serious limitation of dynamic typing is that it does not support data abstraction. For 
example, it might seem appropriate to take the cdr of a list, but it would be inappropriate to do so 
if that list happened to be a bignum representation of a number (section 2.1), and we were not 
inside the implementation of the number data type. We study this issue in section 4.3.

In other languages, a run-time value might represent (say) both an integer and character. Such 
languages are said to have an untyped execution model. Data abstraction, as exemplified by an 
example of a list that is also a bignum, is one way in which such overlaps might arise.

We could have implemented the language of section 3.5 in an untyped execution model. We could 
have represented procedures by integers that point-



 

(define-datatype closure-record closure-record?  (a-closure-
record    (ids (list-
of symbol?))    (body expression?)    (env environment?)))
(define procval? integer?)(define all-closures (make-vector 1000))(vector-
set! all-closures 0 1)
(define closure  (lambda (ids body env)    (let ((free-ptr (vector-ref all-
closures 0)))      (vector-set! all-closures free-ptr        (a-closure-
record ids body env))      (vector-set! all-closures 0 (+ 1 free-
ptr))      free-ptr)))(define apply-
procval  (lambda (proc args)    (cases closure-record (vector-ref all-
closures proc)      (a-closure-record (ids body env)        ...))))

Figure 4.1 Implementing procedures in an untyped execution model

ed into an array of closures. See figure 4.1. Here all-closures is a vector of closure records, 
with its first element acting as a free-cell counter. In this representation, given a piece of data, 
there is no reliable way of determining whether it was intended to represent an integer or a 
procedure.

Languages with untyped execution models typically make no attempt to detect inappropriate 
operations at run time. If operations are applied to inappropriate data, the results are unspecified. 
In such a language one might be able to multiply 2 characters; the result is whatever the hardware 
happens to do with the representation of characters. We call this a laissez-faire design.

Typed languages avoid these difficulties by analyzing the program before execution, to determine 
whether any particular call site in the program might result in an inappropriate operation at run 
time. This is called static type



 

checking. If a potential type error is detected, the analyzer may produce a warning, insert run-time 
checking code (if the run-time model permits it), or reject the program. Static type checking may 
be used either with or without latent typing, but it is critical for languages with an untyped 
execution model, since run-time type checking is infeasible for such languages.

In this chapter we study static type checking. We present several algorithms for assigning types to 
expressions and checking that no expression can possibly cause an operation to be performed on 
inappropriate arguments. Our checkers either produce a type for the program or reject it and raise 
an error.

The types of our first language have a very simple structure:

When types appear in programs, they are called type expressions. For the remainder of this 
section, we ignore the difference between type expressions and types; we consider the distinction 
in more detail in section 4.2.

Our types include base types for integers and booleans and types for procedures. The type of a 
procedure consists of the types of its arguments (separated by *'s) and the type of its result. The 
property of an expressed value v being of type t is defined by induction on t:

Definition 4.1.1 An expressed value is of type int iff it is an integer; it is of type bool iff it is a 
boolean; and it is of type (t1 * . . . * tn -> t) iff it is a ProcVal that expects exactly n arguments, and 
when given n arguments of types t1, . . ., tn, it returns a value of type t.

Thus, in our language, each expressed value has at most one type, but it is not always possible to 
determine the type of a value at run time, because one may not be able to determine the type of the 
value returned by a procedure.



 

We could use these types to describe Scheme values. For example:

(int -> bool) type of even?
(int * int -> int) type of +
(int -> (int -> int)) type of (lambda (x)        (lambda 

(y) (+ x y)))

((int -> int) * int -
> bool)

type of (lambda (f x)        (even? 
(f (+ x 1))))

where we mean these to be the types of the values of these expressions, not of the expressions 
themselves; we haven't said what it means for an expression to have a type.

Our languages will be strongly statically typed, meaning that no program that passes the checker 
will ever make a type error. For our languages, a type error is defined as one of the following:

1. an attempt to apply an integer or a boolean to an argument,

2. an attempt to apply a procedure or primitive to the wrong number of arguments,

3. an attempt to apply a primitive expecting an integer to a non-integer, or

4. an attempt to use a non-boolean as the test in a conditional expression.

We do not include other kinds of errors, such as division by zero, as type errors because our 
techniques do not allow us to ensure the absence of such errors prior to run time.

Our goal is to write a procedure type-of-expression which, given an expression exp and a 
type environment (call it tenv) mapping each variable to a type, assigns to exp a type t with the 
property that:

Whenever exp is executed in an environment in which each variable has the type specified for it 
by tenv, the resulting value has type t.

We will write several versions of type-of-expression. Our analyses will be based on the 
principle that if we know the types of the value of each of the variables in an expression, we can 
deduce the type of the value of the expression. We will then assign that type as the type of the 
expression.

It is easy to write down how type-of-expression should behave for the most common 
expressions. If the expression is a number, then the result is



 

always an integer, and if the expression is a variable, then the result is of the type specified by tenv:

When the expression is an application we can predict the type of the result by looking at the type 
of the operator and types of the operands. For the application to succeed, the type of the operator 
must be a procedure type. If the type of the operator is (t1 * t2 * . . . * tn -> t), then there must be 
exactly n operands, and the type of the i-th operand must be ti for each i, so that the procedure is 
given arguments of the right type. If these conditions hold, then the result of the application will 
be the result type of the procedure, namely t. We can summarize this by writing

This is an example of a conditional specification. It says that if all the hypotheses (listed above the 
line) are true, then the conclusion (shown below the line) must also be true. We often omit the "if," 
"and" s and "then," since they are implicit in the format of the rule. We call this the typing rule for 
application. Such rules are a standard way of specifying the typing behavior of a language.

As another example of this kind of reasoning, let us consider the typing rule for conditional 
expressions. In the languages of chapter 3, the test expression of a conditional expression can 
return any value. Here, since we have a type of booleans available, we restrict conditional 
expressions so that the test expression must return a boolean. This leads us to the following rule:



 

For a conditional expression to be well-typed, the test must have type bool, and the two branches 
must have the same type t. The value of the conditional expression will be the value of one of its 
branches, so no matter what the value of the test, the value of the entire expression will have type t.

We next turn to finding the type of a procedure expression. Consider the procedure expression 
proc (x1, . . ., xn) exp. To say that this procedure expression has type (t1 * t2 * . . . * tn -> t) is to 
say that it expects n arguments, of types t1, . . ., tn, and given such arguments it will return a value 
of type t.

To check that this procedure actually has this behavior, we must show that if the body is executed 
with the variables x1, . . ., xn having values of types t1, . . ., tn, then it will produce a value of type t. 
Of course, the body exp may have other variables, but those will have the values (and hence the 
types) that they had at closure-construction time.

This suggests the following rule, where we use the same notation about environment extension 
that we used in section 3.5; we write [x = t1,y = t2]tenv in place of (extend-tenv '(x y) '(t1 t2) 
tenv).

This example reveals a fundamental problem with this approach: if we are trying to compute the 
type of a proc expression, how are we going to find the types t1, . . ., tn of the bound variables? 
They are nowhere to be found.

There are two basic strategies for rectifying this situation.

• type checking: In this approach the programmer is required to supply the missing information 
about the types of bound variables, and the type checker deduces the types of the other expressions 
and checks them for consistency.

• type inference: In this approach the type checker attempts to infer the types for the bound 
variables based on how the variables are used in the program. If the language is carefully 
designed, the type checker can infer all or most of the types of the bound variables.

We study type checking in sections 4.2 and 4.3, and type inference in section 4.4. Type checking 
is the approach taken in most commonly used programming languages, but type inference 
illustrates some important ideas.



 

Figure 4.2 Grammar for expressions with types

Exercise 4.1 [ ] Find at least two languages in which it is possible to multiply two characters. What, if 
anything, can be deduced about representation of characters by analyzing the output?

4.2 Type Checking.

In a type-checked language, we require the programmer to include the types of all bound 
variables. For letrec-bound variables, we require the programmer to specify the result type of 
the procedure as well; we see later why this is needed. We modify our grammar to embody these 
requirements in figure 4.2.

Here we have changed the productions for proc-exp and letrec-exp. We have also added 
productions for true-exp and false-exp, which are of boolean type. With this syntax, 
typical programs look like



 

proc (int x) add1(x)

and

letrec  int fact (int x) =        if zero?(x) then 1 else *(x,(fact sub1
(x)))in fact

A procedure expression looks like

where t1, . . ., tn are type expressions. The result type of fact is int, but the type of fact itself 
is (int -> int).

Type expressions are syntactic in nature; we introduce types as the corresponding analysis-time 
semantic notion, as we use closures as the run-time semantic notion corresponding to procedure 
expressions. For the language of this section, we take types to be the same as type expressions; 
types are given more structure in sections 4.3 and 4.4.

A type is either an atomic type with a name or a procedure type with a list of argument types and a 
result type. Using named atomic types enables us to add new atomic types later. The procedure 
expand-type-expression converts type expressions to types in the obvious way. Our 
checker calls expand-type-expression whenever we convert from something syntactic 
(that is, something from the abstract syntax tree) to something we want to analyze. The constants 
int-type and bool-type are convenient abbreviations. See figure 4.3.

We have enough tools to write type-of-expression. See figure 4.5. The first few clauses 
implement the rules for literals and variables. We use a procedure apply-tenv similar to 
apply-env but with a distinctive error message. The clause for if-exp implements the rule for 
conditional expressions. It calls the procedure check-equal-type!, which succeeds if its first 
two arguments are equal types and otherwise raises an error. The third argument to check-
equal-type! is used for error reporting. We use the procedure type-to-external-form 
to convert a type back into a list structure like

       (int * (int -> bool) -> int)

for better readability (figure 4.4).

Exercise 4.2 [ ] The Scheme procedure equal? is more powerful than needed here. Rewrite check-
equal-type! to do an explicit recursive traversal of the types.



 

(define-datatype type type?  (atomic-type    (name symbol?))  (proc-
type    (arg-types (list-of type?))    (result-type type?)))(define int-
type (atomic-type 'int))(define bool-type (atomic-type 'bool))
(define expand-type-expression  (lambda (texp)    (cases type-
exp texp      (int-type-exp () int-type)      (bool-type-exp () bool-
type)      (proc-type-exp (arg-texps result-texp)        (proc-
type          (expand-type-expressions arg-texps)          (expand-type-
expression result_texp))))))(define expand-type-
expressions  (lambda (texps)    (map expand-type-expression texps)))

Figure 4.3 Representation of types

We can now write auxiliary procedures to implement each of the other rules. The rule for 
procedure expressions in our language is given by

This differs from our previous attempt at a rule for procedures only by the specification of the 
types of the formal parameters in the conclusion.

This rule is implemented by type-of-proc-exp. Given a proc expression proc (t1 x1, t2 
x2, . . ., tn xn) exp, type-of-proc-exp first converts the type expressions t1, . . . tn into the list 
of types arg-types. It then checks the body in the specified type environment and binds the 
resulting type to result-type. Last, it constructs a procedure type out of the appropriate parts 
(figure 4.6), following the specification of the typing rule.



 

(define check-equal-
type!  (lambda (t1 t2 exp)    (or (equal? t1 t2)        (eopl:error 'check-
equal-type!          "Types didn't match: ~s != ~s in~%~s"          (type-
to-external-form t1)          (type-to-external-form t2)          exp))))
(define type-to-external-form  (lambda (ty)    (cases type ty      (atomic-
type (name) name)      (proc-type (arg-types result-
type)        (append          (arg-types-to-external-form arg-
types)                                        '(->)          (list (type-
to-external-form result-type)))))))

Figure 4.4 Checking for equal types

We next turn to application. Given either a primitive application or a procedure application, 
type-of-expression finds the types of the operator and the operands and then calls type-
of-application to apply the rule

The definition of type-of-application is shown in figure 4.6. This procedure first checks 
to see that the type of the operator is a procedure type. Then it checks to see that the number of 
arguments expected by the procedure matches the number of arguments supplied. Then, in the 
for-each loop, it checks to see that the type of each expected argument is equal to the type of 
the corresponding operand. It does this by passing each triple of (rand-type, argument-type, rand) 
to check-equal-type!. If these checks succeed, then the type of the application is the result 
type of the procedure.



 

(define type-of-
expression  (lambda (exp tenv)    (cases expression exp      (lit-
exp (number) int-type)      (true-exp () bool-type)      (false-
exp () bool-type)      (var-exp (id) (apply-tenv tenv id))      (if-
exp (test-exp true-exp false-exp)        (let ((test-type (type-of-
expression test-exp tenv))              (false-type (type-of-
expression false-exp tenv))              (true-type (type-of-
expression true-exp tenv)))          (check-equal-type! test-type bool-
type test-exp)          (check-equal-type! true-type false-
type exp)          true-type))      (proc-
exp (texps ids body)        (type-of-proc-
exp texps ids body tenv))      (primapp-exp (prim rands)        (type-of-
application          (type-of-primitive prim)          (types-of-
expressions rands tenv)          prim rands exp))      (app-
exp (rator rands)        (type-of-application          (type-of-
expression rator tenv)          (types-of-
expressions rands tenv)          rator rands exp))      (let-
exp (ids rands body)        (type-of-let-
exp ids rands body tenv))      (letrec-exp (result-texps proc-
names texpss idss bodies                    letrec-body)        (type-of-
letrec-exp          result-texps proc-
names texpss idss bodies          letrec-body tenv))      )))(define types-
of-expressions  (lambda (rands tenv)    (map (lambda (exp) (type-of-
expression exp tenv)) rands)))

Figure 4.5 type-of-expression for a type checker



 

(define type-of-proc-exp  (lambda (texps ids body tenv)    (let ((arg-
types (expand-type-expressions texps)))      (let ((result-
type              (type-of-expression body                (extend-tenv ids arg-
types tenv))))        (proc-type arg-types result-type)))))(define type-of-
application  (lambda (rator-type rand-
types rator rands exp)    (cases type rator-type      (proc-type (arg-
types result-type)        (if (= (length arg-types) (length rand-
types))          (begin            (for-each              check-equal-
type!              rand-types arg-types rands)            result-
type)          (eopl:error 'type-of-expression            (string-
append              "Wrong number of arguments in expression ~s:"              "~
%expected ~s~%got ~s")            exp            (map type-to-external-form arg-
types)            (map type-to-external-form rand-
types))))      (else        (eopl:error 'type-of-
expression          "Rator not a proc type:~%~s~%
had rator type ~s"          rator (type-to-external-form rator-type))))))
(define type-of-primitive  (lambda (prim)    (cases primitive prim      (add-
prim ()        (proc-type (list int-type int-type) int-type))      (incr-
prim ()        (proc-type (list int-type) int-type))      (zero-test-
prim ()        (proc-type (list int-type) bool-type))      ...)))

Figure 4.6 Checking procedures, application, and primitives



 

(define type-of-let-exp  (lambda (ids rands body tenv)    (let ((tenv-for-
rands            (extend-tenv              ids              (types-of-
expressions rands tenv)              tenv)))      (type-of-
expression body tenv-for-rands))))

Figure 4.7 Checking let

To deal with primitive applications, we need type-of-primitive, which takes a primitive 
and returns its type (figure 4.6).

Exercise 4.3 [ ] The specification of the types in type-of-primitive is less readable than one 
might like. Modify type-of-primitive so that the types of primitives are specified using list 
structures like (int * (int -> bool) -> int). Include a list-structure parser to convert a 
list structure like the one above.

What about let and letrec? Typing let is easy. We can compute the types of each of the 
right-hand sides, and use those types in the type environment for the body. The typing rule is:

The code for this is in figure 4.7. The letrec expression is a little more challenging. A typical 
letrec expression looks like



 

This expression declares a set of procedures named p1, p2,..., with bodies e1, e2, . . . . The 
procedure pi has ni parameters; its j-th formal parameter is named xij and has type tij; and its result 
type is ti. Hence the type of pi should be (ti1 * ti2 * . . . * ti,ni -> ti).

The body of the letrec and each of the procedure bodies e1, e2,. . . must be checked in a type 
environment where each variable is given its correct type. We can use our scoping rules to 
determine what variables are in scope, and hence what types should be associated with them.

In the body of the letrec, the procedure names p1, p2,. . . are in scope. As suggested above, the 
procedure pi is declared to have type (ti1 * ti2 . . . -> ti). Hence the body should be checked in the 
type environment

We have to check each of the right-hand sides. But in what type environment? In the i-th 
procedure body ei, the variables p1, p2, . . . are in scope, and they should have the same types they 
have in tenvbody. In addition, the formal parameters xi1, xi2, . . . are in scope, and they should have 
types ti1, ti2,. . . .Hence the type environment for ei should be

Furthermore, in this type environment, ei should have result type ti. This leads us to the following 
rule for letrec:

We must include the result types ti in the program. We cannot just compute the type of each ei, as 
we did for let, because we need all of the tj's to compute the type of each ei.



 

(define type-of-letrec-exp  (lambda (result-texps proc-
names texpss idss bodies            letrec-body tenv)    (let ((arg-
typess            (map              (lambda (texps)                (expand-
type-expressions texps))              texpss))         (result-
types           (expand-type-expressions result-texps)))      (let ((the-
proc-types              (map proc-type arg-typess result-
types)))        (let ((tenv-for-body                (extend-tenv proc-
names the-proc-types tenv)))          (for-
each            (lambda (ids arg-types body result-
type)              (check-equal-type!                (type-of-
expression                  body                  (extend-tenv ids arg-
types tenv-for-body))                result-
type                body))            idss arg-typess bodies result-
types)          (type-of-expression letrec-body tenv-for-body))))))

Figure 4.8 Checking letrec

The code for type-of-letrec-exp is shown in figure 4.8. The type expressions for the 
arguments and for the result are first converted to types. The variable the-proc-types is then 
bound to the list of types of the procedures, and tenvbody is computed and is bound to tenv-for-
body. Then the type of each procedure body is computed and is compared to the specified result 
type. If all of these tests are passed, then the type of the letrec body is computed and is returned 
as the type of the entire expression.

The top level of the checker is type-check, which is defined as

(define type-check  (lambda (string)    (type-to-external-form      (type-
of-program        (scan&parse string)))))



 

Exercise 4.4 [ ] Complete the implementation of the checker, and test it on expressions that exercise all 
aspects of the checker. These tests should, of course, include programs that are rejected by the checker.

Exercise 4.5 [ ] Construct a test harness that takes a set of expressions, along with their correct types (or 
#f for expressions that should report a type error), runs the checker on each, and verifies that the checker 
returns the correct type for each expression that should be typed and that it reports an error for each expression 
that should be rejected. Hint: this will require using more of the Scheme language than we have used for our 
interpreters.

Exercise 4.6 [ ] Extend the checker to handle varassign-exp from section 3.7.

Exercise 4.7 [ ] Add pair types to the language. Say that a value is of type (pair t1 t2) if it is a pair 
consisting of a value of type t1 and a value of type t2. Add to the language the following productions:

A pair expression creates a pair; an unpack expression (like exercise 3.18) binds its two 
identifiers to the two parts of the expression; the scope of these identifiers is the body. The typing 
rules for pair and unpack are:

Extend type-of-expression to implement these rules.



 

Exercise 4.8 [ ] Add list types to the language, with operations like those of exercise 3.7. A value is of 
type (list t) if and only if it is a list and all of its elements are of type t. Extend the language with the 
following productions:

with types given by the following four rules:

Write similar rules for car and cdr, and extend the checker to handle these as well as the other 
expressions. These rules should guarantee that car and cdr are applied to lists, but they should 
not guarantee that the lists be non-empty. Why would it be unreasonable for the rules to guarantee 
that the lists be non-empty? Why is the type parameter in emptylist necessary?



 

4.3 Enforcing Abstraction Boundaries

The presence of data abstraction in a language makes the definition of "inappropriate" more 
difficult. We can probably agree that in Scheme (3 x) and (car 3) are inappropriate, but what 
about (- #\a #\b) or (- #\a 1)? If a particular implementation of the character interface 
used integers as a representation, then these might be appropriate inside the implementation of the 
data type of characters, but they would likely be inappropriate outside the implementation, since 
the client code is not supposed to know, or be able to take advantage of, the representation of the 
data. And even (car 3) might be appropriate inside the implementation of numbers, if the 
implementation used a unary or a bignum representation.

We'd like to add to our language a facility for building and enforcing abstraction boundaries. Our 
language will use types to ensure that client code does not manipulate the values of the data type 
except through the procedures in the interface of the type.

We establish an abstraction boundary with a lettype expression, which looks like

This defines a new type named tid, represented by the type t. The names p1, p2,. . . make up the 
interface. The bodies e1, e2,. . . of these procedures constitute the implementation, and body is the 
client or user of the type. The idea is that the definitions of p1, p2,. . . know that a value of type tid 
is really implemented as a value of type t, but body will see tid as a new atomic type, manipulable 
only by the procedures named p1, p2,. . . .

For example, figure 4.9 (top) is a definition of a type myint that implements the interface like 
that of the nonnegative integers from section 2.1. It uses the built-in integers of our language, 
except that zero is represented by 1. In the implementations of the procedures, myint is the same 
as int, so we can invoke add1 or sub1 on a value of type myint. In body, however, myint is 
a new data type, on which we can use only the operations zero (a 0-ary procedure that returns a 
representation of 0), succ, pred, and iszero?. So in the body (succ (zero)) is legal, 
but add1 ((zero)) is not, nor is zero? ((zero)).



 

For another example, consider a data type like the type of environments. Since we do not have 
symbols in our language, we consider instead the data type of finite functions from integers to 
integers in figure 4.9 (middle). The interface consists of the names zero-ff, extend-ff, and 
apply-ff. The procedure zero-ff takes no arguments and returns the function that always 
returns 0. The procedure extend-ff changes the value of the function for a single integer. The 
functions built by zero-ff and extend-ff are finite in that they return non-zero answers for 
only finitely many arguments. The procedure apply-ff applies a finite function to an argument.

We cannot write the code in figure 4.9 (bottom), however. The procedure application (f k) in 
apply-ff is acceptable, since inside the implementation we know that finite functions are 
represented as procedures. Indeed, inside extend-ff we could have written (old-ff k1) in 
place of (apply-ff old-ff k1). But such an application is not acceptable in the body, since 
that would mean that the body relies on this representation.

Our idea for implementing this is to use type identifiers in our type expressions, and to put 
bindings for the type identifiers in our type environments. In the preceding examples, myint (or 
ff) is a type identifier. We check the implementation in a type environment where myint (or 
ff) is bound to its representation type, but we check the client code in a type environment in 
which myint (or ff) is bound to a new atomic type.

To implement this idea, we add to the grammar two new productions:

The first of these is the production for lettype. The second production introduces type 
identifiers into the language of type expressions.

At run time, a lettype expression will act like a letrec expression. The scope of the declared 
procedures consists of the procedure bodies and the body of the lettype.



 

lettype myint = int  myint zero () = 1  myint succ (myint x) = add1
(x)  myint pred (myint x) = sub1
(x)  bool iszero? (myint x) = zero? (sub1(x))in 
bodylettype ff = (int -> int)  ff zero-
ff () = proc (int k) 0  ff extend-ff (int k, int val, ff old-
ff) =       proc (int k1)         if zero? (- (k1,
k))         then val         else (apply-ff old-ff k1)  int apply-
ff (ff f, int k) = (f k)in let ff1 = (extend-
ff 1 11               (extend-ff 2 22                 (zero-
ff)))   in (apply-ff ff1 2)lettype ff = (int -> int)  ff zero-
ff () = proc (int k) 0  ff extend-ff (int k, int val, ff old-
ff) =       proc (int k1)         if zero? (- (k1,
k))         then val         else (apply-ff old-ff k1)  int apply-
ff (ff f, int k) = (f k)in let ff1 = (extend-
ff 1 11               (extend-ff 2 22                 (zero-
ff)))|  in (ff1 2)

Figure 4.9 lettype expressions

We add to our type environments a new kind of binding, so that the type environment binds 
ordinary identifiers to types and type identifiers to types. The latter get added one at a time, so we 
create a new kind of rib:



 

(define apply-tenv  (lambda (tenv sym)    (cases type-
environment tenv      (empty-tenv-record ()        (eopl:error 'apply-
tenv          "Variable ~s unbound in type environment" sym))      (extended-
tenv-record (syms vals tenv)        (let ((pos (list-find-
position sym syms)))          (if (number? pos)            (list-
ref vals pos)            (apply-tenv tenv sym))))      (typedef-
record (name type tenv)        (apply-tenv tenv sym)))))

Figure 4.10 Adding a new kind of rib to type environment

Having a new kind of rib means that we can use the same name both for a type identifier and an 
ordinary identifier (figure 4.10).

Exercise 4.9 [ ] The error behavior of apply-tenv can be improved by including the original type 
environment in the error message. Rewrite apply-tenv to do this.

The definition of types is unchanged from section 4.2, but we modify expand-type-
expression to take a type environment and expand the bindings of any type identifiers it sees 
(hence the name expand). See figure 4.11.



 

(define expand-type-expression  (lambda (texp tenv)    (cases type-
exp texp      (tid-type-exp (id) (find-typedef tenv id))      (int-type-
exp () (atomic-type 'int))      (bool-type-exp () (atomic-
type 'bool))      (proc-type-exp (arg-texps result-texp)        (proc-
type          (expand-type-expressions arg-texps tenv)          (expand-type-
expression result-texp tenv))))))(define expand-type-
expressions  (lambda (texps tenv)    (map      (lambda (texp)        (expand-
type-expression texp tenv))      texps)))

Figure 4.11 Expanding type expressions

Every use of expand-type-expression is now modified to take the type environment as a 
parameter. For example, we write:

(define type-of-proc-exp  (lambda (texps ids body tenv)    (let ((arg-
types (expand-type-expressions texps tenv)))      (let ((result-
type              (type-of-expression body                (extend-
tenv ids arg-types tenv))))        (proc-type arg-types result-type)))))

The procedure type-of-lettype-exp works like type-of-letrec-exp, except that 
when it checks the procedure declarations, it does so in an environment where the type identifier is 
bound to its representation, and when it checks the body, it does so in an environment where the 
type identifier is bound to a new atomic type.



 

Recall that a typical lettype expression looks like

To check this expression, we build two type environments. The type environment tenvimplementation 
is used as a basis for checking the procedure bodies ei that form the implementation of the data 
type. The type environment tenvclient is used for checking body, which forms the client or user of 
the data type.

We must also bind each ordinary identifier to its type according to the usual scoping rules. To do 
this, we proceed by analogy with letrec. As with letrec, the procedure body is checked in an 
environment in which the procedure's formal parameters and all the letrec-bound procedure 
names are bound to their declared types. Furthermore, the type expressions should be expanded 
using tenvimplementation, because the procedure body ei is inside the abstraction boundary, and so the 
representation of the type tid as t should be visible. Hence the type environment for ei should be

where t* means the expansion of the type expression t in tenvimplementation.

Similarly, the type environment for the body of the lettype should be

where t† denotes the expansion of the type expression t in tenvclient. This is the correct expansion, 
because the body is outside the abstraction boundary,



 

and therefore should see tid as an atomic type, on which the only available operations are the pi.

Every time we extend a type environment, we do so with a type expression that is expanded in the same type 
environment. Therefore we define the auxiliary procedures

(define extend-tenv-with-typedef-exp  (lambda (typename texp tenv)    (extend-tenv-
with-typedef typename      (expand-type-expression texp tenv)      tenv)))
(define extend-tenv-with-type-exps  (lambda (ids texps tenv)    (extend-
tenv ids      (expand-type-expressions texps tenv)      tenv)))

The code is shown in figure 4.12. We proceed much as we did for type-of-letrec-exp. The procedure 
first extracts the various portions of the lettype. The variable rhs-texps is bound to the list of type 
expressions associated with the procedures. We must use type expressions here, rather than types, because these 
type expressions will be expanded differently in the procedure bodies than in the body of the lettype.

The type environments tenv-for-implementation, tenv-for-client, tenv-for-proc, and 
tenv-for-body are then built. In tenv-for-client, the type name is bound to a fresh atomic type. This 
code uses fresh-type, which creates a new type with a name similar to its argument:

(define fresh-
type  (let ((counter 0))    (lambda (s)      (set! counter (+ counter 1))      (atomic-
type        (string->symbol          (string-append            (symbol-
>string s)            (number->string counter)))))))

Successive evaluations of (fresh-type 'xx) will return (atomic-type xx1), (atomic-type 
xx2), etc.

Once the various type environments are constructed, the type of each of the procedure bodies is computed and 
compared to the specified result type,



 

(define type-of-lettype-exp  (lambda (type-name texp            result-
texps proc-names arg-texpss idss bodies            lettype-
body tenv)    (let ((the-new-type (fresh-type type-name))          (rhs-
texps            (map proc-type-exp arg-texpss result-
texps)))      (let ((tenv-for-implementation              (extend-tenv-
with-typedef-exp                type-name texp tenv))            (tenv-for-
client              (extend-tenv-with-typedef                type-name the-
new-type tenv)))        (let ((tenv-for-proc                (extend-tenv-
with-type-exps                  proc-names rhs-texps                  tenv-
for-implementation))              (tenv-for-body                (extend-
tenv-with-type-exps                  proc-names rhs-texps tenv-for-
client)))          (for-each            (lambda (ids arg-texps body result-
texp)              (check-equal-type!                (type-of-
expression                  body                  (extend-tenv-with-type-
exps                    ids arg-texps tenv-for-
proc))                (expand-type-expression                  result-
texp tenv-for-proc)                body))            idss arg-
texpss            bodies result-texps)          (type-of-
expression lettype-body tenv-for-body))))))

Figure 4.12 type-of-lettype-exp



 

lettype myint = int  myint zero () = 1  myint succ (myint x) = add1
(x)  myint pred (myint x) = sub1(x)  bool iszero? (myint x) = zero? (-(x, 1))
in (succ (zero))
type: myint8lettype myint = int  myint zero () = 1  myint succ (myint x) = add1
(x)  myint pred (myint x) = sub1(x)  bool iszero? (myint x) = zero? (-(x, 1))
in add1((zero))types didn't match: int != myint9 in(app-exp (var-exp zero) ())
lettype ff = (int -> int)  ff zero-ff () = proc (int k) 0  ff extend-
ff (int k, int val, ff old-ff) =       proc (int k1) if zero? (-
(k1, k))                     then val                     else (apply-ff old-
ff k1)  int apply-ff (ff f, int k) = (f k)in let ff1 = (extend-ff 1 11 (extend-
ff 2 22 (zero-ff)))   in (apply-ff ff1 2)type: intlettype ff = (int -
> int)  ff zero-ff () = proc (int k) 0  ff extend-ff (int k, int val, ff old-
ff) =       proc (int k1) if zero? (-
(k1, k))                     then val                     else (apply-ff old-
ff k1)  int apply-ff (ff f, int k) = (f k)in let ff1 = (extend-ff 1 11 (extend-
ff 2 22 (zero-ff)))   in (ff1 2)rator not a proc type:(var-exp ff1)
had rator type ff117

Figure 4.13 Examples of type checking using lettype



 

using tenv-for-proc, which extends tenv-for-implementation. If all of these tests 
are passed, then the type of the lettype body is computed in tenv-for-body, which extends 
tenv-for-client, and is returned as the type of the entire expression.

The results of this system on the examples from the beginning of the section are shown in figure 
4.13. Each attempt to break the abstraction boundary by performing an illegal operation is 
detected as a type error.

Exercise 4.10 [ ] Complete the implementation of the checker of this section.

Exercise 4.11 [ ] How many of the other calls to expand-tenv can be replaced with extend-
tenv-with-type-exps?

Exercise 4.12 [ ] Extend the test harness from exercise 4.5 for this checker. Be careful to handle fresh types 
correctly; for instance, the first example in figure 4.13 might return myint1 or myint2 or myint3, etc.

Exercise 4.13 [ ] In our examples, the client program (the body of the lettype) appears together 
with the code that implements the abstract data type. It is more typical for the client code to be separate from 
the implementation. Thus a program unit might look like

importtype ff  ff zero-ff ()  ff extend-
ff (int k, int val, ff old-ff)  int apply-ff (ff f, int k)in body

Modify this checker to check such program units. Devise a complementary syntax for exporttype to 
export a type, and a syntax for combining such program units.

4.4 Type Inference

Writing down the types in the program may be helpful for design and documentation, but it can be 
time-consuming. Another approach is to have the compiler figure out the types of all the variables, 
based on observing how they are used, and utilizing any hints the programmer might give. 
Surprisingly, for our simple languages, the compiler can always infer the types of the variables. 
This strategy is called type inference.

To do this, we change the language so that all the type expressions are optional. In place of a 
missing type expression, we use the marker ?. Hence a typical program looks like



 

letrec  ? even(? odd, ? x) =      if zero? (x) then 1 else (odd sub1(x))
in letrec     ? odd(? x) =         if zero? (x) then 0 else (even odd sub1
(x))   in (odd 13)

Each of the five question marks indicates a place where a type must be inferred.

Since the type expressions are optional, we may fill in some of the ?'s with types, as in

letrec  ? even(? odd, int x) =      if zero? (x) then 1 else (odd sub1(x))
in letrec     bool odd
(? x) =            if zero? (x) then 0 else (even odd sub1
(x))   in (odd 13)

Exercise 4.14 [ ] What is wrong with this expression?

letrec  ? even(? odd, ? x) =      if zero? (x) then 1 else (odd sub1(x))
in letrec     ? odd
(bool x) =         if zero? (x) then 0 else (even odd sub1
(x))   in (odd 13)

We add the following productions to our grammar:



 

An <optional-type-exp> is either a type expression or a ?. To use optional type expressions in 
ordinary expressions, we change the productions for proc-exp and letrec-exp to use 
<optional-type-exp>:

To deal with the ?'s, we add a new kind of type, called a type variable. A type variable stands for 
a type that is not yet known. Each type variable contains a serial number that identifies it uniquely, 
and a container, which is a vector of length 1. The vector's single element can be either (), 
meaning that nothing is known about this type: empty, or else a type: full. The checker will fill the 
type variable when it deduces something about the type. Once a type variable is full, its contents 
will never be changed. Such a variable is sometimes called single-assignment or write-once. The 
procedures that deal with types treat a type variable as a placeholder for the type it contains (if 
any).

The procedures for manipulating type variables are shown in figure 4.14. The procedure fresh-
tvar creates a fresh type variable, with a globally unique value for its counter, and with its vector 
initialized to (), meaning that nothing is known yet about this type.

Type variables should not be confused with the type identifiers of section 4.3. Type identifiers 
have lexical scope and are kept in type environments, but type variables are global and are kept in 
Scheme's heap.

We change all calls to the procedure expand-type-expression so that they instead call 
expand-optional-type-expression. This change is necessary to match the grammar. 
When the procedure expand-optional-type-expression encounters a type expression, 
it calls expand-type-expression; when it encounters a ?, it emits a type variable.

We next modify check-equal-type! to handle type variables. The new version of check-
equal-type! will perform a task that may be described as "check to see if the two types can be 
made equal, and if so, adjust the contents of the type variables to make them equal."



 

Figure 4.14 Definition of types and type variables



 

With the new behavior for check-equal-type!, type-of-expression recursively 
walks through the program. As it walks through the program, it calls check-equal-type! to 
take careful note of how each symbol is used and to make whatever deductions are possible about 
the types.

This equality-centered approach can be used to simplify the code for type-of-application:

(define type-of-application  (lambda (rator-type actual-
types rator rands exp)    (let ((result-type (fresh-tvar)))      (check-
equal-type!        rator-type        (proc-type actual-types result-
type)        exp)      result-type)))

This version makes a type variable result-type for the as-yet-unknown type of the entire 
application. It then checks to see that the operator is a procedure that accepts arguments of the 
same types as the operands and that produces a result that is the same as the type of the 
application. As a result of this matching, some deductions will be made about result-type, 
and those deductions will be stored in result-type where they will be visible to everyone. The 
remainder of the code for type-of-expression and its auxiliary procedures can be used 
unchanged, since each subexpression is considered exactly once.

Before considering the details of check-equal-type!, let's see how we might do this process 
by hand.

As type-of-expression walks through the code, it introduces one type variable for each 
formal parameter whose type is not declared, and one additional type variable for each application. 
For each node in the abstract syntax tree of the expression we get some equations between types 
and type variables.

For example, when typing a conditional expression if e0 then e1 else e2 in tenv, we must have



 

and when typing an application (rator rand1 . . . randn) in tenv, it must be that

This says that at each application, the operator must be a procedure that maps the types of the 
operands to the type of the entire application.

Finally, when typing proc expression proc (x1 . . . xn) exp in tenv, we must have

where tenvbody is the type environment in which the body exp is to be typed.

So to deduce the type of an expression, we'll introduce a type variable for each bound variable and 
each application, and write out an equation for each compound expression using the rules above. 
Since we type each subexpression in exactly one type environment, we don't need to worry about 
the different values of tenv.

Then all we have to do is solve the resulting equations. The code solves these equations by calling 
check-equal-type!, but we first consider how to solve these equations by hand.

As an example, consider proc (f,x) (f +(1,x) zero? (x)). Let's start by making a 
table of all the bound variables and applications in this expression, and assigning a type variable to 
each one:

Expression Type Variable

f tf

x tx

(f +(1,x) zero? 
(x))

t1

+(1,x) t2

zero? (x) t3



We know, by the procedure rule, that the type of the entire expression is (tf * tx -> t1). 
We must find the types tf,tx, and t1.



 

Now, for each compound expression (either an application or a conditional; in this example we 
have only applications), we can deduce a type equation:

Expression Type Equation

(f +(1,x) zero? 
(x))

tf = (t2 * t3 -> t1)

+(1,x) (int * int -> int) = (int * tx -> t2)

zero? (x) (int -> bool) = (tx -> t3)

The first equation says that the procedure f must be prepared to take a first argument of the same 
type as +(1,x) and a second argument of the same type as zero? (x), and its result must be 
of the same type as the application. The other equations follow similarly: in each case the left-
hand side is the type of the operator, and the right-hand side is a type constructed from the types of 
the operands and the type of the application. The right-hand side is the type of those procedures 
that "fit" in this application.

We can fill in tf, tx, t1, t2, and t3 in any way we like, so long as they satisfy the three 
type equations:

tf = (t2 * t3 -> t1)(int * int -> int) = (int * tx -> t2)(int -
> bool) = (tx -> t3)

We can solve such equations by systematic inspection. From the second equation, we conclude

tx = intt2 = int

Substituting these values into the remaining equations, we get

tf = (int * t3 -> t1)(int -> bool) = (int -> t3)

From the last equation, we deduce

t3 = bool

and substituting this into the first equation yields

tf = (int * bool -> t1)



 

We have now solved for all the type variables, except t1:

tf = (int * bool -> t1)tx = intt2 = intt3 = bool

This process of repeated inspection and substitution is called unification.

We conclude from this calculation that we could assign our original term proc(f,x) (f +(1,
x) zero?(x)) the type (tf * tx -> t1) or the type ((int * bool -> t1) * 
int -> t1) for any choice of t1. This code will work for any type t1; we say it is 
polymorphic in t1.

This is reasonable, since the first argument f must be a procedure of two arguments. Its first 
argument must be an int (because + always produces an int, and its second argument must be a 
bool, but its output could be anything. The second argument x must be an int because it is used 
both as an argument to + and as an argument to zero?. The output from the entire procedure will 
be the same as the output from f.

Let us consider the same example, but with the + changed to a cons, with type (int * 
(list int) -> (list int)). Then the equations would be

Expression Type Equation

(f cons(1,x) 
zero?(x))

tf = (t2 * t3 -> t1)

cons(1,x) (int * (list int) -> (list int)) = 
(int * tx -> t2),

zero?(x) (int -> bool) = (tx -> t3)

From the second equation, we deduce

tx = (list int)t2 = (list int)

Substituting these values into the third equation, we get

(int -> bool) = ((list int) -> t3)

But there is no value for t3 that will make these types the same: for them to be equal, we must 
have int = (list int), which is false.

So this is an example where check-equal-type! reports an error. This is the correct 
behavior, since the expression is inconsistent in its use of x: the first occurrence of x requires it to 
be a list of ints, and the second occurrence requires it to be an int. So the expression should be 
rejected.



 

Exercise 4.15 [ ] How can this approach be extended to do type inference by hand for a let expression? 
For a letrec expression?

Exercise 4.16 [ ] Write down and solve the type equations for the following examples.

1. proc (f,g,p,x) if (p (f x)) then (g 1 x) else add1 ((f x))

2. proc (x,p,f) if (p x) then add1 (x) else (f p x)

3. proc (x,p,f,g) if (p add1 (x)) then add1 ((f x)) else (g f x)

4. let x = 3 f = proc (x) add1 (x) in (f x)

Treat add1 as if it were a procedure of type (int -> int), and + as if it were a procedure of type 
(int * int -> int).

How does check-equal-type! solve equations like the ones in the preceding examples? 
Instead of simply calling equal?, check-equal-type! will recursively traverse the type 
structures it is asked to equate. If it encounters a type variable that contains a type, it recurs on that 
type. If it encounters a type variable that is empty, then it fills the type variable with the other type.

Figure 4.15 shows this algorithm at work on the example of page 157. In the initial equation, the 
left-hand side is the type variable tf, so check-equal-type! fills it by inserting a reference 
to the right-hand side (shown in the figure as a dashed line). The resulting data structure is shown 
in figure 4.15(a).

Figure 4.15(b) shows the data structure after processing the second equation. The equation is set 
up as shown. The type variable t2 is shared by the first and second equations. The procedure 
check-equal-type! does a recursive traversal of the two trees. It observes that both sides are 
2-argument procedure types, and both have first argument int. For the second argument, one side 
is int and the other is tx, so it fills tx with int. It then observes that the result type on one side 
is int and on the other is t2, so it fills t2 with int, yielding the structure shown in the figure.

After processing the third equation, the data structure looks like figure 4.15(c). Again, check-
equal-type! observes that both sides are 1-argument procedure types. The argument on the 
left side is int. The argument on the right side is also int, because the right-side argument is 
tx, which has already been filled with int. Thus the step in the manual algorithm of substituting 
the new values into the remaining equations is unnecessary here because the substitution is done 
automatically in the data structure. Last, check-equal-type! observes that the result type is 
bool on the



 

left and t3 on the right, so it fills t3 with bool. Thus, check-equal-type! simulates the 
hand solution shown earlier and gets the same information.

Figure 4.15(d) shows the data structures built by check-equal-type! for the example on 
page 159. Here the first two equations have been processed, and check-equal-type! has 
begun to process the third equation. Comparing the types of the first argument, it discovers int 
on the left, but tx which is (list int) on the right. Since there are no type variables in int 
or (list int), there is no way to make these two types equal. Therefore check-equal-
type! reports that the equations cannot be solved.

Though both the checker of section 4.2 and the inferencer of this section use a recursive traversal 
of the program to be checked, they work very differently. The checker always computes the type 
of an expression from the type of its subexpressions. The type inferencer recursively walks 
through the program, taking careful note of how each symbol is used and making deductions about 
the types whenever possible. In the manual system we have used above, the notes take the form of 
equations. In the implemented system, the note-taking is automated, and takes the form of new 
equations, introduced with check-equal-type!. Solving the equations consists of recursively 
walking through the equations and making substitutions as necessary. Setting the contents of a 
type variable effectively substitutes the new value for the type variable everywhere it appears.

The code for check-equal-type! is shown in figure 4.16. The procedure checks each way in 
which t1 and t2 can be equal:

1. It first determines whether t1 and t2 are the same Scheme value. If so, it succeeds and returns 
an unspecified value.

2. If t1 is a type variable, it calls the procedure check-tvar-equal-type! on t1 and t2, 
passing exp for error-reporting purposes.

3. Symmetrically, if t2 is a type variable, it calls check-tvar-equal-type! on t2 and t1.

4. If t1 and t2 are atomic types, it determines whether they have the same name; if not, they 
cannot be equal, and an error is reported.

5. If t1 and t2 are both procedure types, it determines whether they have the same number of 
arguments. If so, it recurs on each of the argument types and on the result type.

6. Otherwise, t1 and t2 cannot be equal, so an error is reported.



 

(a) after processing first equation

(b) after processing second equation

(c) after processing third equation

(d) about to discover an unsatisfiable equation

Figure 4.15 Data structures built by check-equal-type!.





 

(define check-equal-
type!  (lambda (t1 t2 exp)    (cond      ((eqv? t1 t2))      ((tvar-
type? t1) (check-tvar-equal-type! t1 t2 exp))      ((tvar-type? t2) (check-
tvar-equal-type! t2 t1 exp))      ((and (atomic-type? t1) (atomic-
type? t2))       (if (not             (eqv?               (atomic-type-
>name t1)               (atomic-type->name t2)))         (raise-type-
error t1 t2 exp)))      ((and (proc-type? t1) (proc-
type? t2))       (let ((arg-types1 (proc-type->arg-
types t1))             (arg-types2 (proc-type->arg-
types t2))             (result-type1 (proc-type->result-
type t1))             (result-type2 (proc-type->result-
type t2)))         (if (not               (= (length arg-
types1) (length arg-types2)))           (raise-wrong-number-of-
arguments t1 t2 exp)           (begin             (for-
each               (lambda (t1 t2)                 (check-equal-
type! t1 t2 exp))               arg-types1 arg-types2)             (check-
equal-type!               result-type1 result-
type2 exp)))))      (else (raise-type-error t1 t2 exp)))))(define check-
tvar-equal-type!  (lambda (tvar ty exp)    (if (tvar-non-
empty? tvar)      (check-equal-type! (tvar-
>contents tvar) ty exp)      (begin        (check-no-
occurrence! tvar ty exp)        (tvar-set-contents! tvar ty)))))

Figure 4.16 The unifier check-equal-type!



 

Figure 4.17 Creating a circular type

The procedure check-tvar-equal-type! deals with the case of equating a type variable 
tvar and a type ty. If tvar contains a type, then we recur on its contents, calling check-
equal-type! to equate that type to ty.

If tvar is empty, we would like to set the contents of tvar to ty, thus making them equal. 
However, we have one more important detail to address: check-equal-type! recurs on the 
structure of its arguments. So if the contents of the type variables create a cyclic structure, 
check-equal-type! might fail to terminate. So we first call check-no-occurrence! to 
make sure that the type variable tvar does not occur within the type ty.

For example, consider the equation

t1 = (int -> t1)

If we filled in t1, as shown in figure 4.17, we would get a cycle, which would cause check-
equal-type! to loop the next time it encountered t1.

After first saving ty for error-reporting purposes, check-no-occurrence! recurs on the 
structure of ty. If ty is an atomic type, then tvar cannot occur in it. If ty is itself a type 
variable, then the code checks to see if it is the same variable as tvar; if it is, an error is reported. 
Last, if ty is a procedure type, then we recur on the argument types and the result type. (See 
figure 4.18.)

There is only one more place in the inferencer where we need to be concerned about type 
variables. That is in type-to-external-form (figure 4.19). If type-to-external-
form is given a type variable, then if the variable is empty, it should produce a suitable symbol; if 
the variable contains a type, the result should be obtained by recurring on that type.

Exercise 4.17 [ ] Complete the implementation of the type inferencer.

Exercise 4.18 [ ] Why won't the previous version of type-of-application work here? Why is 
this the only type-of- procedure that needs to be modified?



 

(define check-no-
occurrence!  (lambda (tvar ty exp)    (letrec      ((loop         (lambda (ty1)           (cases type ty1             (atomic-
type (name) #t)             (proc-type (arg-types result-type)               (begin                 (for-each loop arg-
types)                 (loop result-type)))             (tvar-
type (num vec)               (if (eqv? tvar ty1)                 (raise-occurrence-check tvar ty exp)))))))      (loop ty))))

Figure 4.18 check-no-occurrence!

Figure 4.19 type-to-external-form



 

Exercise 4.19 [ ] Extend the inferencer to handle pair types, as in exercise 4.7.

Exercise 4.20 [ ] Extend the inferencer to handle list types, as in exercise 4.8. Modify the language so that emptylist no longer needs a type. (Hint: create a type variable in place of t).

Exercise 4.21 [ ] Write a translator that erases all the types from a program, so that it can be interpreted by one of the interpreters from chapter 3.

Exercise 4.22 [ ] If the procedure check-equal-type! processes a series of equations between type variables, such as t1 = t2, t2 = t3, t3 = t4, etc., it will generate a chain where t1 contains a reference to t2, t2 contains a reference to t3, etc. 
The procedure check-equal-type! will then have to traverse these links before finding out any useful information about t1. Write an expression that causes this situation to arise. Then modify check-equal-type! so that whenever 
t1 points to some type (other than a type variable) via some chain of references, all the type variables on the path are modified to point directly to the end point of the chain; this will save later pointer traversals. This technique is called path 
compression and is known to improve the asymptotic complexity of the unification algorithm.

Exercise 4.23 [ ] Our inferencer is very useful, but it is not powerful enough to allow the programmer to define procedures that are polymorphic, like the polymorphic primitives pair or cons, which can be used at many types. For example, 
one would like to write programs like

letrec  ? map (? f, ? x) =      if null? (x)      then emptylist      else cons ((f car (x)), (map f cdr (x)))  ? even (? y) =      if zero? (y) then true else (odd sub1
(y))  ? odd (? y) =      if zero? (y) then false else (even sub1(y))in pair((map add1 cons (3,cons (5,emptylist))),        (map even cons (3,cons (5,emptylist))))

This expression uses map twice, once producing a list of ints and once producing a list of bools. Therefore it needs two different types for the two uses. Since the inferencer of this section will find at most one type for map, it will detect the 
clash between int and bool and reject the program. (See exercises 4.7 and 4.8.)

Invent or discover through reading a technique for declaring procedures that are polymorphic.



 

Further Reading

Most current work in typed programming languages can be traced back to (Milner, 1978), which 
introduces types in ML as a way of guaranteeing the reliability of computer-generated proofs. 
(Ullman, 1997) gives a good short introduction; a complementary treatment is (Felleisen & 
Friedman, 1996). The use of types to enforce data abstractions appears in (Reynolds, 1975) and is 
used in CLU (Liskov, Snyder, Atkinson, & Schaffert, 1977). ML has a module system that 
enforces similar boundaries; see (Paulson, 1996) for a good discussion with some interesting 
applications.

Type inference has been discovered several times. The standard reference is (Hindley, 1969), 
though Hindley remarks that the results were known to Curry in the 1950s. (Morris, 1968) also 
presents type inference, but the widespread use of type inference did not happen until Milner's 
1978 paper.
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5 Objects and Classes

Many programming tasks require the program to manage some piece of state through an interface. 
For example, a file system has internal state, but we access and modify that state only through the 
file system interface. Our queue abstraction in section 2.4 is an additional example of this 
paradigm. In each case, the piece of state spans several variables, and changes to those variables 
must be coordinated in order to maintain the consistency of the state. One therefore needs some 
technology to ensure that the various variables that constitute the state are updated in a 
coordinated manner. Object-oriented programming is a useful technology for accomplishing this 
task.

In object-oriented programming, each managed piece of state is called an object. An object 
consists of several stored quantities, called its fields, with associated methods (functions) that have 
access to the fields. The operation of calling a method is often viewed as sending the method name 
and arguments as a message to the object; this is sometimes called the message-passing view of 
object-oriented programming.

Most often, one needs to manage several pieces of state with similar methods. For example, one 
might have several file systems or several queues in a program. To facilitate the sharing of 
methods, object-oriented programming systems typically provide classes, which are structures that 
specify the fields and methods of each such object. Each object is created as an instance of some 
class.

Often, one wishes to define a new class as a small modification of an existing class by adding or 
changing the behavior of some methods, or by adding fields. In this case, we say the new class 
inherits from or extends the old class, since the rest of the class's behavior is inherited from the 
original class.

This program organization is useful because it permits a straightforward translation from the 
objects of the physical world or other application



 

domain to the objects of the program. Real-world objects typically have some state and some 
behavior that either controls or is controlled by that state. For example, cats can eat, purr, jump, 
and lie down, and these activities are controlled by their current state, including how hungry and 
tired they are. Real-world objects are conveniently grouped into classes containing objects that 
behave similarly except for differences that can be explained by their state. A particular cat shares 
general behavioral characteristics with all cats, and also has state that changes with time. Classes 
may be arranged hierarchically, reflecting for example that cats belonging to the same breed share 
certain characteristics of the breed, as well as more general characteristics of all cats. Similarly, 
cats all have characteristics common to mammals. This is easily modeled by inheritance.

Whether program elements are modeling real-world objects or artificial aspects of a system's state, 
a program's structure is often clarified if it can be composed of objects that combine both behavior 
and state. It is also natural to associate behaviorally-similar objects with the same class.

Closures give one example of the power of programming with objects. A closure is an object 
whose state is contained in its free variables. A closure has a single behavior: it may be invoked on 
some arguments. More often, however, one wants an object to have several behaviors. Object-
oriented programming languages provide support for this ability.

Another important feature of object-oriented languages is polymorphism, which means the ability 
of an entity to have more than one form. In programming languages it often means the ability of a 
value to have more than one type. In the context of object-oriented languages, the most common 
kind of polymorphism is the ability of an instance of a subclass to play the role of an object of its 
superclass, so that it may be used anywhere an instance of the superclass may be used. Another 
form of polymorphism is introduced in exercise 5.13. We study polymorphism in more detail in 
chapter 6.

There is much debate over which attributes a language must have to be considered object-oriented, 
but there is general agreement that the four elements just discussed are central:

• objects encapsulate behavior (methods) and state (stored in fields),

• classes group objects that differ only in their state,

• inheritance allows new classes to be derived from existing ones, and

• polymorphism allows messages to be sent to objects of different classes.



 

class c1 extends object  field i  field j  method initialize (x)    begin      set i = x;      set j = -
(0,x)    end  method countup (d)    begin      set i = +(i, d);      set j = -
(j, d)    end  method getstate () list(i, j)let t1 = 0    t2 = 0    o1 = new c1(3)
in begin     set t1 = send o1 getstate();     send o1 countup(2);     set t2 = send o1 getstate
();     list(t1, t2)   end

Figure 5.1 A simple object-oriented program

Though languages may support any combination of these features, there is great synergy in combining all four.

In this chapter we study the primary run-time structures of object-oriented programming. We present four implementations of the 
same language, ranging from a very simple implementation to one that incorporates most features of a realistic implementation.

5.1 Object-Oriented Programming

Object-oriented languages use a variety of different words to describe similar concepts. We begin with an example to establish our 
terminology and to illustrate alternatives. Figure 5.1 shows a simple program in our object-oriented language. It declares c1 to be a 
class that inherits from object. We



 

study inheritance in section 5.2. Each object of class c1 contains two fields named i and j. The fields 
are sometimes called members or instance variables. The class c1 supports three methods, sometimes 
called member functions, named initialize, countup, and getstate. Each method consists of 
its method name, its method ids (also called method parameters), and its method body. The method 
names correspond to the kinds of messages to which instances of c1 can respond. We sometimes refer to 
"c1's countup method."

In this example, each of the methods of the class maintains the integrity constraint or invariant that i = 
−j. A real programming example would, of course, likely have far more complex integrity constraints.

We next turn to execution of the program in figure 5.1. The expression first creates two variables, t1 
and t2, and an object o1 of the class. When an object is created, its initialize method is invoked, 
in this case setting i to 3 and j to -3. The getstate method of o1 is then invoked, returning the list 
(3 -3). Next, o1's countup method is invoked, changing the value of the two fields to 5 and -5. 
Then the getstate method is invoked, returning the list (5 -5). Last, the value of list (t1, 
t2), which is ((3 -3) (5 -5)), is returned as the value of the entire program.

In the program in figure 5.2 we have a tree with two kinds of nodes, interior_node and 
leaf_node. To find the sum of the leaves of a node, we send it the sum message. Generally, we do 
not know what kind of node we are sending the message to. Instead, each node accepts the sum message 
and uses its sum method to do the right thing. This is called dynamic dispatch, and is used to implement 
subclass polymorphism. Here the expression builds a tree with two interior nodes and three leaf nodes. It 
sends a sum message to the node o1; o1 sends sum messages to its subtrees, and so on, returning 12 
at the end.

A method body can invoke other methods by using the identifier self, which is bound to the object on 
which the method has been invoked. In some languages this is called this instead of self. Thus use 
of self allows methods to be mutually recursive. For example, in

class oddeven extends object  method initialize () 1  method even (n)    if zero?
(n) then 1 else send self odd(sub1(n))  method odd (n)    if zero?
(n) then 0 else send self even(sub1(n))let o1 = new oddeven()in send o1 odd(13)



 

class interior_node extends object  field left  field right  method initialize (l, r)    begin      set left = l;      set right = r    end  method sum () +(send left sum
(),send right sum())class leaf_node extends object  field value  method initialize (v) set value = v  method sum () valuelet o1 = new interior_node
(           new interior_node(             new leaf_node(3),             new leaf_node(4)),           new leaf_node(5))in send o1 sum()

Figure 5.2 Object-oriented program for summing the leaves of a tree

the methods even and odd invoke each other recursively, because when they are executed, self is bound to an object that contains them both. This is much like the dynamic-binding implementation of recursion in 
exercise 3.32.

5.2 Inheritance

Inheritance allows the programmer to define new classes by incremental modification of old ones. This is extremely useful in practice. Inheritance supports hierarchical classifications of objects; for example, every 
colorpoint is a point, but not vice versa. This can be modeled using inheritance, as in the classic example in figure 5.3.

If class c2 extends class c1, we say that c1 is the parent of c2 or that c2 is a child of c1. Since inheritance defines c2 as an extension of c1, c1 must be defined before c2. To get things started, we introduce a class 
object with no methods or fields. Since object has no initialize method, it is impossible to create an object of class object. Each class (other than object) has a single



 

class point extends object  field x  field y  method initialize (initx, inity)    begin      set x = initx;      set y = inity    end  method move (dx, dy)    begin      set x = +(x, dx);      set y = +(y, dy)    end  method get_location () list
(x, y)class colorpoint extends point  field color  method set_color (c) set color = c  method get_color () colorlet p = new point(3,4)    cp = new colorpoint(10,20)in begin     send p move(3,4);     send cp set_color(87);     send cp move
(10,20);     list(send p get_location(),     % returns (6 8)          send cp get_location(),    % returns (20 40)          send cp get_color())       % returns 87   end

Figure 5.3 Classic example of inheritance: colorpoint

parent, but it may have many children. Thus the relation extends imposes a tree structure on the set of classes, with object at the root.

The genealogical analogy is the source of the term inheritance. The analogy is often pursued so that we speak of the ancestors of a class (the chain from a class's parent to the root class object) or its descendants.

If class c2 inherits from class c1, all the fields and methods of c1 will be visible from the methods of c2, unless they are redeclared in c2.

Since a class inherits all the methods and fields of its parent, an instance of a child class can be used anywhere an instance of its parent can be used.



 

Similarly, any instance of any descendant of a class can be used anywhere an instance of the class can be used. This is sometimes called subclass polymorphism. If c2 is a descendant of c1, we sometimes say that c2 is a subclass of c1, and write c2 < c1, because the objects that can be used in place of an object of class c2 are a subset of 
the objects that can be used in place of an object of class c1. Conversely, we sometimes say that c1 is a superclass of c2.

Since each class has at most one immediate superclass, this is a single-inheritance language. Some languages allow classes to inherit from multiple superclasses. Such multiple inheritance is powerful, but it is also problematic; we consider some of the difficulties in the exercises.

If a field of c1 is redeclared in one of its subclasses c2, the new declaration shadows the old one, just as in lexical binding. For example, consider

class c1 extends object  field x  field y  method initialize () 1  method setx1 (v) set x = v  method sety1 (v) set y = v  method getx1 () x  method gety1 () yclass c2 extends c1  field y  method sety2 (v) set y = v  method getx2 () x  method gety2 () ylet o2 = new c2
()in begin     send o2 setx1(101);     send o2 sety1(102);     send o2 sety2(999);     list(send o2 getx1(),    % returns 101          send o2 gety1(),    % returns 102          send o2 getx2(),    % returns 101          send o2 gety2())    % returns 999   end

Here an object of class c2 has two fields named y: the one declared in c1 and the one declared in c2. The methods declared in c1 see c1's fields x and y. In c2, the x in getx2 refers to c1's field x, but the y in gety2 refers to c2's field y.

If a method m of a class c1 is redeclared in one of its subclasses c2, we say that the new method overrides the old one. If an object of class c2 is sent an



 

m message, then the new method should be used. This rule is simple, but it has subtle consequences. Consider the 
following example:

class c1 extends object  method initialize () 1  method m1 () 1  method m2 () send self m1
()class c2 extends c1  method m1 () 2let o1 = new c1()    o2 = new c2()in list(send o1 m1
(),        send o2 m1(),        send o2 m2())

We expect send o1 m1() to return 1, since o1 is an instance of c1. Similarly, we expect send o2 m1() to 
return 2, since o2 is an instance of c2 and its method should clearly have priority in this case.

Now what about send o2 m2()? Method m2 immediately calls method m1, but which one? The call happens in 
class c1, so it is possible that the programmer intended send self m1() as a call to c1's m1, as in the 
oddeven example on page 172. This interpretation is called static method dispatch, because the method to be 
executed can be determined from the text of the declaration of class c1, which is static information.

The alternate interpretation is that the programmer intended that any invocation of method m1 on an object of class 
c2 should get c2's method for m1, returning 2. Since self is o2, which is of class c2, the call send self m1
() should return 2. This interpretation is called dynamic method dispatch, because the actual method to be executed 
for any given method call cannot be determined without knowing the actual class of the object on which the method 
is invoked, and this will only be known at run time.

To further illustrate the interaction of self and inheritance, consider the example in figure 5.4.

When o2 is sent the message m3, the method body in c1 is evaluated, with self bound to o2. But o2's method 
for m2 is the one in c2, since o2 is an instance of class c2. This is an important consequence of the use of dynamic 
dispatch, which is a vital part of the object-oriented programming paradigm.

In general, static method dispatch is meaningful only in a language with static types. In a language without types, 
static method dispatch is meaningful only when the object of the call is self (or in a super call, discussed



 

class c1 extends object  method initialize () 1  method m1 () 1  method m2 () 100  method m3 () send self m2()
class c2 extends c1  method initialize () 1  method m2 () 2let o1 = new c1()    o2 = new c2()in list(send o1 m1
(),    % returns 1        send o1 m2(),    % returns 100        send o1 m3(),    % returns 100        send o2 m1
(),    % returns 1 (from c1)        send o2 m2(),    % returns 2 (from c2)        send o2 m3
())    % returns 2 (c1's m3 calls c2's m2)

Figure 5.4 Example illustrating interaction of self and inheritance

presently). We therefore use dynamic method dispatch for the language of this section.

There is one occasion in which a form of static method dispatch is required, as the program in figure 5.5 illustrates.

We have supplied the class colorpoint with an overly specialized initialize method that sets the field color as well as the fields x and y. However, 
the body of the new method duplicates the code of the overridden one. This might be acceptable in our small example, but in a large example this would clearly 
be bad practice. (Why?) Furthermore, if colorpoint declared a field x, there would be no way to initialize the field x of point, just as there is no way to 
initialize the first y in the example on page 175.

The solution is to replace the duplicated code in the body of colorpoint's initialize method with a super call of the form super initialize (). 
Then the initialize method in colorpoint would read

  method initialize (initx, inity, initcolor)    begin      super initialize (initx, inity);      set color = initcolor    end



 

class point extends object  field x  field y  method initialize (initx, inity)    begin      set x = initx;      set y = inity    end  method move (dx, dy)    begin      set x = +(x, dx);      set y = +(y, dy)    end  method get_location () list (x, y)
class colorpoint extends point  field color  method initialize (initx, inity, initcolor)    begin      set x = initx;      set y = inity;      set color = initcolor    end  method set_color (c) set color = c  method get_color () colorlet o1 = new colorpoint (3,4,172)
in send o1 get_color()

Figure 5.5 Example demonstrating a need for static method dispatch

To explain the operation of a super call, we introduce the notion of a host class. We call the class in which a method is declared that method's host class. Similarly, define the host class of an expression to be the host class of the method (if any) in which the expression occurs.

A super call, super s(...), in the body of a method m invokes a method s of the parent of m's host class. This is not necessarily the parent of the class of self. To illustrate this distinction, consider figure 5.6. Sending an m3 message to an object o3 of class c3 finds c2's method for m3, which executes super m1(). If super 
m1() were dynamically dispatched, it would execute the m1 method of the parent of the class of o3. The class of o3 is c3, whose parent is c2. So the super call would invoke c2's method for m1, returning



 

class c1 extends object  method initialize () 1  method m1 () send self m2
()  method m2 () 13class c2 extends c1  method m1 () 22  method m2 () 23  method m3 () super m1
()class c3 extends c2  method m1 () 32  method m2 () 33let o3 = new c3()in send o3 m3 ()

Figure 5.6 Example illustrating interaction of super call with self

22. But that is not what happens. The correct interpretation of the super call uses static method dispatch. Since this call 
occurs in class c2, it executes the m1 method of c2's parent c1, which invokes o3's m2 method. But o3 is an object of 
class c3, so it is c3's m2 method that is found, returning 33.

Though the object of a super method call is self, method dispatch is static, because the specific method to be invoked 
can be determined from the text, independent of the class of self.

5.3 The Language

We have so far presented object-oriented programming in terms of a set of examples. In order to proceed with an 
implementation, we need to be more precise.

For our language, we extend the language of section 3.7 with the additional productions shown in figure 5.7. A program is 
a sequence of class declarations followed by an expression to be executed. A class declaration has a name, an immediate 
superclass name, zero or more field declarations, and zero or more method declarations. A method declaration, like a 
procedure declaration in a letrec, has a name, a list of formal parameters, and a body.



 

Figure 5.7 New productions for a simple object-oriented programming language

We add objects and lists as expressed values, so we have

We write List(Expressed Value) to indicate that the lists may contain any expressed value. The 
operations on lists are as in exercise 3.7. Last, we assume that we have a begin expression, as in 
exercise 3.39, that evaluates its subexpressions from left to right and returns the value of the last 
one.

The definition of Obj depends on our choice of implementation. Classes are neither denotable nor 
expressible in our language: they may appear as part of objects but never as the binding of a 
variable or the value of an expression. (But, see exercise 5.22.)

We have added three expressions. The new expression creates an object of the named class. The 
initialize method is then invoked to initialize the



 

fields of the object. The rands are evaluated and passed as parameters to the initialize 
method. The value returned by this method call is thrown away and the new object is returned as 
the value of the new expression.

A send expression consists of an expression that should evaluate to an object, a method name, 
and zero or more operands. The object's class should include the named method, which is passed 
the arguments obtained by evaluating the operands. As with procedure calls, the method body is 
then evaluated within the scope of lexical bindings associating the method's parameters with the 
corresponding arguments. Though not enforced, we refrain from sending an initialize 
method.

A super call expression invokes a method found by looking at the superclass of the expression's 
host class. A super call consists of a method name and zero or more arguments. The object of the 
send expression that caused the host method's body to be evaluated continues as the object as if it 
were a send expression. In all other respects, the super expression is treated the same as a 
send expression.

In the next section, we present four implementations of this language. They share a basis that 
implements all of the non-object-oriented features of the language, including eval-program 
and eval-expression.

When a program is evaluated, the class declarations are processed by elaborate-class-
decls!, and then the expression is evaluated.

(define eval-program  (lambda (pgm)    (cases program pgm      (a-
program (c-decls exp)|       (elaborate-class-decls! c-decls)        (eval-
expression exp (init-env))))))

Each implementation must supply a value for elaborate-class-decls!. The job of this 
procedure is to store the class declarations in some form that makes them accessible when needed 
later in the computation.

The procedure eval-expression contains, as usual, a clause for each kind of expression in 
the language, including a clause for each of the three new productions. We consider each new kind 
of expression in turn.

When a send expression is evaluated, the operands and the object expression are evaluated. Then 
the method associated with the method name is found in the method declaration of the object and 
then that method is applied to its arguments. This is the work of find-method-and-apply, 
whose second argument is the name of the class where the method is to be looked up. The 
corresponding clause in eval-expression is



 

      (method-app-exp (obj-exp method-name rands)        (let ((args (eval-
rands rands env))              (obj (eval-expression obj-
exp env)))          (find-method-and-apply            method-name (object-
>class-name obj) obj args)))

The procedure find-method-and-apply takes four arguments: a method name, the name of 
the class in which to begin searching for the method, the value for self, and the list of 
arguments. Here the search begins in the class of the object. Each implementation must supply its 
own definition for this procedure. Similarly, each implementation must supply a definition for 
object->class-name.

Super method invocation is similar to ordinary method invocation except that the method is 
looked up in the superclass of the host class of the expression. In our implementations, we make 
sure that the name of this class is bound to a special variable named %super. This is not a legal 
variable name in our language, so there is no possibility of confusion, nor need we expand denoted 
values to include class names. The self will be the current self, which will likewise be bound in 
the environment. It is the job of find-method-and-apply to establish these bindings 
correctly. The clause in eval-expression is

      (super-call-exp (method-name rands)        (let ((args (eval-
rands rands env))              (obj (apply-env env 'self)))          (find-
method-and-apply            method-name (apply-env env '%super) obj args)))

Our last task is to create objects. When a new expression is evaluated, the operands are evaluated 
and a new object is created from the class name. Then its initialize method is called, but its value 
is ignored. Finally, the object is returned.

      (new-object-exp (class-name rands)        (let ((args (eval-
rands rands env))              (obj (new-object class-
name)))          (find-method-and-apply            'initialize class-
name obj args)          obj))

So each implementation must supply its own elaborate-class-decls!, find-method-
and-apply, object->class-name, and new-object, and, of course, any data 
structures and other procedures that these four procedures require.



 

5.4 Four implementations.

We present four implementations. The first is a naive implementation. The second chooses a more 
realistic representation for objects. The third recognizes that most of the work that happens at 
either object-construction time or method-application time can be done at class-construction time, 
so that this work is accomplished once per program execution rather than once per object-creation 
or method application. The last compresses a hierarchy of methods into a single structure for more 
convenient searching.

5.4.1 A Simple Implementation

We begin with a very simple implementation.

In this implementation, we observe that a class declaration already contains the information that 
we need, including the class's name, its immediate superclass's name, its field identifiers, and its 
method declarations. Hence we represent classes and methods by their declarations. We build a 
repository of class declarations by using a Scheme global variable, the-class-env:

(define the-class-env '())(define elaborate-class-decls!  (lambda (c-
decls)    (set! the-class-env c-decls)))

The procedure lookup-class looks up a class name in the-class-env and returns the 
corresponding declaration.

We represent an object as a list of parts, with one part corresponding to each class in the 
inheritance chain. Each part consists of class name and a vector to hold the state of the part. The 
class declaration of the first part of the list represents the lowest point on the class chain, and the 
further down the list we move, the closer we get to the top of the hierarchy. For example, in the 
program of figure 5.8, o3 will be represented by three parts, each representing the contributions of 
one of c1, c2, and c3. The representation of o3 is shown in figure 5.9. Each part is defined by 
the data type

(define-datatype part part?  (a-part    (class-
name symbol?)    (fields vector?)))

To build an object, we construct a list of parts, given a class name. If the class name is object, 
then we know that we have reached the top of the



 

class c1 extends object  field x  field y  method initialize ()    begin      set x = 11;      set y = 12    end  method m1 () ... x ... y ...  method m2 () ... send self m3
() ...class c2 extends c1  field y  method initialize ()    begin      super initialize();      set y = 22    end  method m1 (u, v) ... x ... y ...  method m3 () ...
class c3 extends c2  field x  field z  method initialize ()    begin      super initialize();      set x = 31;      set z = 32    end  method m3 () ... x ... y ... z ...
let o3 = new c3()in send o3 m1 (7,8)

Figure 5.8 Sample program for OOP implementations

inheritance chain and there are no parts to construct. Otherwise, we find the class declaration corresponding to the given class name, and we return a list whose car is the first part and whose cdr is obtained by recurring 
on the superclass. The first part is constructed from the name of the current class and a vector containing as many elements as there are fields declared in the current class. When we are done, we have a list of 
uninitialized parts.



 

Figure 5.9 An object in the simple implementation

(define new-object  (lambda (class-name)    (if (eqv? class-
name 'object)      '()      (let ((c-decl (lookup-class class-
name)))        (cons          (make-first-part c-decl)          (new-
object (class-decl->super-name c-decl)))))))(define make-first-
part  (lambda (c-decl)    (a-part      (class-decl->class-name c-
decl)      (make-vector (length (class-decl->field-ids c-decl))))))

In this code, we use simple procedures to access individual fields of a node in the syntax tree. We 
give these procedures names that include "->" to suggest their behavior. For example,

(define class-decl->super-name  (lambda (c-decl)    (cases class-decl c-
decl      (a-class-decl (class-name super-name field-ids m-
decls)        super-name))))



 

We often generalize these "->" accessors to allow for compositions of accessors, and to use 
lookup-class when necessary. For example, we write

(define class-name->method-decls  (lambda (class-name)    (class-decl-
>method-decls (lookup-class class-name))))

Exercise 5.1 [ ] Use these techniques to define the procedures part->fields and part-
>field-ids.

Our next challenge is to implement find-method-and-apply. We search the classes along 
the inheritance chain until we find a class that declares a method matching the method name. 
When we do, we call apply-method with the found method declaration, the name of the host 
class, self, and the arguments.

(define find-method-and-apply  (lambda (m-name host-
name self args)    (if (eqv? host-name 'object)      (eopl:error 'find-
method-and-apply        "No method for name ~s" m-name)      (let ((m-
decl (lookup-method-decl m-name                      (class-name->method-
decls host-name))))        (if (method-decl? m-decl)          (apply-
method m-decl host-name self args)          (find-method-and-apply m-
name            (class-name->super-name host-
name)            self args))))))

The procedure lookup-method-decl takes a method name and a list of method declarations 
and returns the matching method declaration or false if no matching method declaration is found.

Applying a method is much like applying a closure. We must execute the body of the method in an 
environment in which each variable is bound to the proper value. To do this, we build an 
environment in which the first rib contains the bindings for %super, for self, and for the formal 
parameters of the method. The rest of the environment provides a binding for each field variable 
that is visible from the method. The field variables visible from the method are those of the parts 
of the object starting with the host class. Consider the example in figure 5.8. If we execute send 
o3 m1 (7,8), then the fields visible from method m1 are those starting at the part of o3 that 
corresponds to m1's host class c2. In this way, a class name gives a view of the object; we can find 
the view with the procedure view-object-as:



 

(define view-object-as  (lambda (parts class-name)    (if (eqv? (part-
>class-name (car parts)) class-name)      parts      (view-object-
as (cdr parts) class-name))))

From this view of the object, we can generate an environment consisting of one rib for each part. 
Each rib binds the field variables of one part to the fields of that part, using the already-
constructed vector:

(define build-field-env  (lambda (parts)    (if (null? parts)      (empty-
env)      (extend-env-refs        (part->field-
ids (car parts))        (part->fields    (car parts))        (build-field-
env (cdr parts))))))(define extend-env-
refs  (lambda (syms vec env)    (extended-env-record syms vec env)))

Now we can write apply-method:

(define apply-method  (lambda (m-decl host-
name self args)    (let ((ids (method-decl->ids m-
decl))          (body (method-decl->body m-decl))          (super-
name (class-name->super-name host-name)))      (eval-
expression body        (extend-env          (cons '%
super (cons 'self ids))          (cons super-
name (cons self args))          (build-field-env            (view-object-
as self host-name)))))))

Figure 5.10 contains the environment built for the evaluation of the method body in send o3 m1
(7,8). We have now written the four required procedures, so our implementation is complete.

5.4.2 Flat Objects

We don't want to have to build all these ribs at every method call. It would be better to represent 
all the storage managed by an object as a single vector, instead of spreading it over a list of parts. 
This leads to the definition



 

Figure 5.10 Environment for method application in simple implementation

Figure 5.11 An object in the flat representation

(define-datatype object object?  (an-object    (class-
name symbol?)    (fields vector?)))

We choose to lay out the storage with the fields from the "oldest" class first. Thus in figure 5.8, an 
object of class c1 would have its fields laid out as (x y); an object of class c2 would lay out its 
fields as (x y y), with the second y being the one belonging to c2, and an object of class c3 
would be laid out as (x y y x z). The representation of object o3 from figure 5.8 is shown in 
figure 5.11.



 

This strategy has the useful property that any subclass of c3 will have these fields in the same 
positions in the vector, because any fields added later will appear to the right of these fields. What 
is the position of x in a method that is defined in any subclass of c3? Assuming that x is not 
redefined, we know that the position of x must be 3 throughout all such methods. Thus, when a 
field identifier is declared, the position of the corresponding value remains unchanged unless the 
field identifier is redeclared.

Of course, we want the methods in class c3 to refer to the field x declared in c3, not the one 
declared in c1. To do this, we change the implementation of environments. In each rib, we use the 
position corresponding to the rightmost occurrence of the variable name. So if the rib is (x y y 
x z), x will refer to the rightmost x, which is the one in c3.

To support this, we redefine rib-find-position.

(define rib-find-position  (lambda (name symbols)    (list-find-last-
position name symbols)))

Exercise 5.2 [ ] Why do the lexical environments of chapter 3 still work with the above definition of rib-
find-position? See exercise 2.16 for a hint.

Since we have changed neither the representation of classes nor the representation of methods, we 
need consider only the two procedures new-object and find-method-and-apply. We 
start with new-object.

(define new-object  (lambda (class-name)    (an-object      class-
name      (make-vector (roll-up-field-length class-name)))))(define roll-
up-field-length  (lambda (class-name)    (if (eqv? class-
name 'object)      0      (+        (roll-up-field-length          (class-
name->super-name class-name))        (length (class-name->field-ids class-
name))))))

The procedure roll-up-field-length is a recursive procedure that starts with a class name 
and finds the total number of fields that must be allocated for an object of that class: if the class 
name is object, there are no fields;



 

otherwise the number of fields is the sum of the number of fields needed for the class's parent and 
the number of fields declared in the class itself.

The procedure find-method-and-apply is unchanged, since it does not deal with the 
representation of objects, but we must redefine apply-method. Since there is only one vector 
of field values, we modify apply-method to build only a single rib for the fields.

The procedure apply-method calls roll-up-field-ids to build a matching list of field 
identifiers. Like roll-up-field-length, it recurs up the inheritance chain, building up the 
list of field identifiers using append. The order of the arguments to append guarantees that the 
old field names precede the new ones, so for c2 in figure 5.8 we get (x y y), as desired.

(define roll-up-field-ids  (lambda (class-name)    (if (eqv? class-
name 'object)      '()      (append        (roll-up-field-
ids          (class-name->super-name class-name))        (class-name-
>field-ids class-name)))))

Figure 5.12 shows the environment built for the evaluation of the method body in send o3 m1
(7,8) in figure 5.8. This figure shows that the vector may be longer than the list of identifiers: 
the list of identifiers is just (x y y), since those are the only field variables visible from method 
m1 in c2, but the vector in the environment is the vector of the entire object. However, since the 
values of these three field variables are in the first three elements of the vector, this still works, 
and since apply-env uses list-find-last-position, the method m1 will associate the 
variable y with the y declared in c2, as desired.



 

Figure 5.12 Environment for method application in the flat object representation

The list of identifiers is generally of the same length as the vector of field variables when the host 
class and the class of self are the same. If the host class is higher up the class chain, then there 
may be more vector elements than field identifiers, but the values corresponding to the field 
identifiers will be at the beginning of the vector. The position of the identifier in the list, as 
reported by list-find-last-position, will always give the correct position for the field 
variable.

This implementation is quite inefficent, however, since we search the class chain whenever we 
build an object (roll-up-field-length) or invoke a method (roll-up-field-ids). 
We address this in our next implementation.

5.4.3 Moving the Work to Class-Declaration Time

To avoid calling roll-up-field-ids at every method call, we need to compute this 
information and store it with the method. While we're at it, we also store the name of the method's 
superclass, for use in super calls. We create a new data type in which to keep this information:

(define-datatype method method?  (a-method    (method-decl method-
decl?)    (super-name symbol?)    (field-ids (list-of symbol?))))



 

This information is static: it does not depend on any expressed or denoted values that might show 
up when the program is executed. So it would be much better to compute it exactly once per class. 
To do this, we need a data type in which to keep the information:

(define-datatype class class?  (a-class    (class-name symbol?)    (super-
name symbol?)    (field-length integer?)    (field-ids (list-
of symbol?))    (methods method-environment?)))

We use an easy representation for method environments:

(define method-environment? (list-of method?))

In this representation the methods slot contains only the methods declared in this class.

We build these classes at class-construction time by redefining the procedure elaborate-
class-decls!:

(define elaborate-class-decls!  (lambda (c-decls)    (for-each elaborate-
class-decl! c-decls)))(define elaborate-class-decl!  (lambda (c-
decl)    (let ((super-name (class-decl->super-name c-
decl)))      (let ((field-ids  (append                          (class-
name->field-ids super-name)                          (class-decl->field-
ids c-decl))))        (add-to-class-env!          (a-
class            (class-decl->class-name c-decl)            super-
name            (length field-ids)            field-ids            (roll-
up-method-decls              c-decl super-name field-ids)))))))

Here the roll-up operations are so simple that they are not worth making into separate procedures. 
The field identifiers are obtained by appending the fields of the current class declaration to those 
of the superclass, which have



 

already been computed and stored in the superclass's class structure. The number of fields is 
calculated by taking the length of field-ids.

The procedure initialize-class-env! initializes the class environment to be empty by 
setting the-class-env to the empty list, and the procedure add-to-class-env! adds the 
newly-constructed class to the list of classes the-class-env. The procedure roll-up-
method-decls turns each method declaration into a method, and returns the list of methods:

(define roll-up-method-decls  (lambda (c-decl super-name field-
ids)    (map      (lambda (m-decl)        (a-method m-decl super-
name field-ids))      (class-decl->method-decls c-decl))))

Figure 5.13 shows the class and method structures built for the evaluation of the class declarations 
in figure 5.8. For simplicity, the figure does not include the initialize methods; neither does 
it show the tags on the structures nor the details of the method declarations.

We must adjust find-method-and-apply and apply-method to use this new 
representation. The procedure find-method-and-apply is unchanged, except that every 
reference to a method declaration is changed to a method. The procedure apply-method now 
takes a method instead of a method declaration as its first argument, and it gets the list of field 
identifiers from the method instead of calling roll-up-field-ids. Similarly, we extract the 
binding for %super directly from the method, so the host-name argument is not used.

Exercise 5.3 [ ] Rewrite find-method-and-apply and apply-method so that the host 
name is not passed as an argument to apply-method.



 

Figure 5.13 Class and method structures for sample program

Last, we change new-object to get the required information from the class, rather than calling 
roll-up-field-length:

(define new-object  (lambda (class-name)    (an-object      class-
name|     (make-vector (class-name->field-length class-name)))))



 

5.4.4 Flat Method Environments

In this section we modify the representation of classes so that each class contains not just the 
methods declared in the class, but also those methods of its ancestors that may be invoked on 
objects of the class. Thus, in the definition of a class

(define-datatype class class?  (a-class    (class-name symbol?)    (super-
name symbol?)    (field-length integer?)    (field-ids (list-
of symbol?))    (methods method-environment?)))

the method environment will include all the methods that are reachable for objects of this class, 
not merely the ones that are declared in this class. This is analogous to the transformation in 
section 5.4.2 that replaced a list of field vectors by a single vector. This representation makes 
method searching faster, and is used in chapter 6.

If the class structures contain information about all the reachable methods, then we no longer need 
a loop in find-method-and-apply:

(define find-method-and-apply  (lambda (m-name host-
name self args)    (let ((method (lookup-method m-
name                    (class-name->methods host-
name))))      (if (method? method)        (apply-method method host-
name self args)        (eopl:error 'find-method-and-
apply          "No method for name ~s" m-name)))))

To accomplish this, we must alter roll-up-method-decls, which is responsible for filling 
the method-environment slot in each class structure:

(define roll-up-method-decls  (lambda (c-decl super-name field-
ids)    (merge-methods      (class-name->methods super-
name)      (map        (lambda (m-decl)          (a-method m-decl super-
name field-ids))        (class-decl->method-decls c-decl)))))



 

The procedure roll-up-method-decls combines the methods of the superclass with those 
declared in the current class, using the auxiliary procedure merge-methods.

(define merge-methods  (lambda (super-
methods methods)    (cond      ((null? super-
methods) methods)      (else        (let ((overriding-
method                (lookup-method                  (method->method-
name (car super-
methods))                  methods)))          (if overriding-
method            (cons overriding-method              (merge-
methods (cdr super-methods)                (remove-method overriding-
method methods)))            (cons (car super-methods)              (merge-
methods (cdr super-methods)                 methods))))))))

It is the job of merge-methods to determine the order in which the methods are listed in the 
class. We adopt a strategy similar to that used in section 5.4.2: methods are placed in their order of 
declaration, from oldest to youngest. If a method of a superclass class is overridden, however, the 
newer method is installed in place of the superclass's method. Hence in each class there is at most 
one method for each method name. This strategy yields the representation shown in figure 5.14. 
Here the representation for class c1 is as before. For class c2, method m3 is added at the end, but 
the new version of m1 appears in the first position. For c3, the methods m1 and m2 are as they 
were in c2, but m3 is replaced by the new definition. Of course, the methods are shared, not 
copied, but the diagram shows them as if they were copied for readability.

Exercise 5.4 [ ] Redraw figure 5.14 to show the sharing of methods. Which of the field-ids lists are 
shared?

As with the field layouts of section 5.4.2, this strategy has the property that in any subclass of c3, 
the methods m1, m2, and m3 will always appear in the first three positions of the method 
environment. This property will be crucial for the optimizations to be considered in chapter 6.

The arguments to merge-methods are the methods of the superclass and the current methods. 
There are three cases to consider. The first case is the



 

Figure 5.14 Class and method structures using flat method environments

simplest. If there are no super methods, then we simply return the remaining current methods. 
Next we determine if a super method is being overridden. In that case, we replace the overridden 
method by the overriding one. As part of the recursion, we remove the overriding one from the 
current list of methods to be merged in. As a result of this organization, we know that the super 
method of a particular method is guaranteed to be in the same position



 

thoughout the inheritance chain. If it is not being overridden, we simply add it to the list. So, these 
methods are in the same position as the ones in the super methods. The effect is to append the non-
overriding methods to the tail end of the super methods, and to replace those super methods that 
are being overridden.

We have revised elaborate-class-decls! and find-method-and-apply; new-
object and object->class are unchanged, so this completes our fourth and final 
implementation.

5.4.5 Exercises

This section contains a variety of exercises based on the language and interpreters of this chapter. 
Most can be done with any of the interpreters.

Exercise 5.5 [ ] Complete each of these implementations of the language.

Exercise 5.6 [ ] Test the implementation from the previous exercise by running the test program in figure 
5.15. It should result in a list with the following attributes: 15 appears twice, 35 appears 5 times, 50 appears 
once, 100 appears twice, 200 appears twice, 300 appears once, and there are 6 sets of parentheses.

Exercise 5.7 [ ] The interpreter of section 5.4.1 stores the superclass name of a method's host class in the 
lexical environment. It could instead store the host class name. Then it could retrieve the superclass name from 
the host class name. Make this change to each of the four implementations.

Exercise 5.8 [ ] Implement the following using the language of this section:

1. The queue abstraction of figure 2.5.

2. Extend the queue class with a counter that counts the number of operations that have been 
performed on the current queue.

3. Extend the queue class with a counter that counts the total number of operations that have been 
performed on all the queues in the class. (Hint: pass a shared counter object at initialization time.)

Exercise 5.9 [ ] Implement lexical addressing for this language. First, write a lexical-address calculator 
like that of exercise 1.31 for the language of this section. It should produce abstract syntax trees. Then modify 
the implementation of environments so that the field identifiers are not kept in the ribs, and modify eval-
expression so that apply-env takes a lexical address instead of a symbol, as in exercise 3.25. Of 
course, the lexical addresses calculated for the layered representation of objects (section 5.4.1) will be different 
from those generated for the flat object representation used in the other implementations.

Exercise 5.10 [ ] Can anything equivalent to the optimizations of the preceding exercise be done for 
method invocations? Discuss why or why not.



 

class a extends object  field i  field j  method initialize () 1  method setup ()    begin      set i = 15;      set j = 20;      50    end  method f () send self g
()  method g () +(i, j)class b extends a  field j  field k  method setup ()    begin      set j = 100;      set k = 200;      super setup();      send self h
()    end  method g () list (i, j, k)  method h () super g()class c extends b  method g () super h()  method h () +(k, j)
let p = proc (o)          let u = send o setup()          in list (u, send o g(), send o f())in list((p new a()), (p new b()), (p new c()))

Figure 5.15 Test program for exercise 5.6

Exercise 5.11 [ ] Add to our language the expression instanceof (exp, class-name). It is true if and only if the object obtained by evaluating exp is an instance of class-name or of one of its subclasses. In our framework, why must this 
be an expression rather than a primitive?

Exercise 5.12 [ ] In our language, the environment for a method includes bindings for the field variables declared in the host class and its superclasses. Limit them to just the host class.



 

Exercise 5.13 [ ] Object-oriented languages frequently allow overloading of methods. This feature allows a 
class to have multiple methods of the same name, provided they have distinct signatures. A method's signature 
is typically the method name plus the types of its parameters. Since we do not have types in our current 
language, we might overload based simply on the method name and number of parameters. For example, a 
class might have two initialize methods, one with no parameters for use when initialization with a 
default field value is desired, and another with one parameter for use when a particular field value is desired. 
Extend our interpreter to allow overloading based on the number of method parameters.

Exercise 5.14 [ ] Add to our language a new expression,

fieldref obj field-id

that retrieves the contents of the given field of the object. Add also

fieldset obj field-id exp

which sets the given field to the value of exp.

Exercise 5.15 [ ] Many object-oriented languages divide an object's fields into private fields, which are 
only accessible lexically from within the class declaration, and public fields, which are accessible from 
anywhere. Add this language feature to the language of the previous exercise. Hint: use the ideas in exercise 
5.7.

Exercise 5.16 [ ] Extend the results of exercise 5.14 to include super field references and super field 
assignments.

Exercise 5.17 [ ] Extend the syntax of our language so that each method declaration requires one of the 
modifiers public, protected, or private. A public method may be called from anywhere. A 
protected method may be called only from the class in which it is declared or one of its subclasses. A private 
method may be called only from its host class.

Exercise 5.18 [ ] In sections 5.4.3 and 5.4.4, redefine method-environment? to be (vector-
of method?). What other procedures must be altered to accomodate this change?

Exercise 5.19 [ ] In section 5.4.4, could we have defined merge-methods to be something very 
simple, like append? What would be lost in doing so?

Exercise 5.20 [ ] In our interpreters, the class object is a special case because it is not explicitly 
represented in the class environment. What procedures must be aware of this special case? Eliminate these 
special cases by placing a class whose name is object into the initial class environment. Give the class 
object an initialize method, so that it is possible to create an object of class object, and so 
that there is a default initialize method.

Exercise 5.21 [ ] In the languages of chapter 3, the process of creating procedures was separate from the 
process of binding a procedure to a name, so a closure did not contain its name, even in a letrec. Modify 
the representations used in this section so



 

that the representation of a class or method no longer contains its name, and modify class and method environments to resemble more closely the environments that were used in chapter 3. Then modify the representation of objects so that they contain a class rather than a class name.

Exercise 5.22 [ ] Design and implement an object-oriented language without explicit classes, using the observation that in the representation of the preceding exercise, each object contains its own methods and fields. Therefore we can replace each class by an object with the correct set of methods and fields. Such an object is 
called a prototype. Replace the class object by a prototype object with no methods or fields. Extend a class by adding methods and fields to its prototype, yielding a new prototype. Thus we might write let c2 = extend c1 ... instead of class c2 extends c1 .... Replace the new operation 
with an operation clone that takes an object and simply copies its methods and fields. Methods in this language occur inside a lexical scope, so they should have access to lexically visible variables, as usual, as well as field variables. What shadowing relation should hold when a field variable of a superprototype has the same 
name as a variable in a containing lexical scope?

Exercise 5.23 [ ] Many object-oriented languages include a provision for static or class variables. Static variables associate some state with a class; all the instances of the class share this state. For example, one might write:

class c1  static next_serial_number = 1  field my_serial_number  method get_serial_number () my_serial_number  method initialize ()    begin      set my_serial_number = next_serial_number;      set next_serial_number = add1
(next_serial_number)    endlet o1 = new c1()    o2 = new c1()in list(send o1 get_serial_number(),        send o2 get_serial_number())

Each new object of class c1 receives a new consecutive serial number.

Add static variables to our language. Since static variables can appear in a method body, apply-method must add an additional rib in the environment it constructs. What environment should be used for the evaluation of the initializing expression for a static variable (1 in the example above)?

Exercise 5.24 [ ] Modify the representation of environments so that self is always easily accessible, even from an interior scope of the method body. (One way of doing this is to make self an additional argument to the interpreter.) Then extend the lexical-address translator of exercise 5.9 so that variables that are 
bound to fields are accessed as vector references from self, rather than being handled as a separate rib. The result should be an interpreter in which any field variable is accessible in constant time.



 

Exercise 5.25 [ ] In exercise 5.13, we added overloading to the language by extending the interpreter. 
Another way to support overloading is not to modify the interpreter, but to use a syntactic preprocessor. Write 
a preprocessor that changes the name of every method m to one of the form m: @n, where n is the number of 
parameters in the method declaration. It must similarly change the name in every method call, based on the 
number of operands. We assume that :@ is not used by programmers in method names, but is accepted by the 
interpreter in method names. Compilers frequently use such a technique to implement method overloading. 
This is an instance of a general trick called name mangling.

Exercise 5.26 [ ] Using the first example of inheritance from figure 5.5, we include a method in the class 
point that determines if two points have the same x and y coordinates. We add the method 
similarpoints to the point class as follows:

method similarpoints (pt)  if equal?(send pt getx(),x)  then equal?
(send pt gety(),y)  else 0

This works for both kinds of points. Since getx, gety, and similarpoints are defined in class 
point, by inheritance, they are defined in colorpoint. Test similarpoints to compare points 
with points, points with color points, color points with points, and color points with color points.

Next consider a small extension. We add a new similarpoints method to the colorpoint class. 
We expect it to return true if both points are collocated, and further, in case both are color points, they have the 
same color. Otherwise it returns false. Here is an incorrect solution.

method similarpoints (pt)  if super similarpoints(pt)  then equal?
(send pt getcolor(),color)  else 0

Test this extension. Determine why it does not work on all the cases. Fix it so that all the tests return the 
correct values.

The difficulty of writing a procedure that relies on more than one object is known as the binary method 
problem. It demonstrates that the class-centric model of object-oriented programming, which this chapter 
explores, leaves something to be desired when there are multiple objects. It is called the binary method 
problem because the problem shows up with just two objects, but it gets progressively worse as the number of 
objects increases.

Exercise 5.27 [ ] We have treated super calls as if they were lexically bound. But we can do better: we 
can determine super calls statically. Since a super call refers to a method in a class's parent, and the parent, 
along with its methods, is known prior to the start of execution, we can determine the exact method to which 
any super call refers at the same time we do lexical-addressing and other analyses. Write a translator that takes 
each super call and replaces it with an abstract syntax tree node containing the actual method to be invoked.



 

Exercise 5.28 [ ] Dynamic method dispatch implies that at any method application site, the class of the object to which the 
message is sent may vary from one call to the next. Though this flexibility is vital, in practice for many call sites the class of the target 
object does not change, or changes only occasionally. We may take advantage of this behavior by caching at the call site the class of the 
last object of that call and the position at which the method was found for that call. With each new call the class of the call's object is 
compared with the class of the last call. If they are the same (a cache hit) the method position is known without doing a new method 
table lookup. This technique is called method caching. Implement caching in our interpreter.

Exercise 5.29 [ ] Some object-oriented languages include facilities for named-class method invocation and field references. In a 
named-class method invocation, one might write named-send c1 o m1(). This would invoke c1's m1 method on o, so 
long as o was an instance of c1 or of one of its subclasses, even if m1 were overridden in o's actual class. Thus this is a form of static 
method dispatch. Named-class field reference provides a similar facility for field reference. Add named-class method invocation, field 
reference, and field setting to the language of this section. How do these facilities fit in with the idea of classes as abstractions?

Exercise 5.30 [ ] Write a translator that replaces method names in named method calls as in exercise 5.29 with numbers indicating 
the offset of the named method in the run-time method vector of the named class. Implement an interpreter for the translated code in 
which named method access is constant time.

Exercise 5.31 [ ] Multiple inheritance, in which a class can have more than one parent, can be useful, but may introduce serious 
complications. What if two inherited classes both have methods of the same name? This can be disallowed, or resolved by enumerating 
the methods in the class by some arbitrary rule, such as depth-first left-to-right, or by requiring that the ambiguity be resolved at the 
point such a method is called. The situation for fields is even worse. Consider the following situation, in which class c4 is to inherit 
from c2 and c3, both of which inherit from c1:

class c1 extends object  field xclass c2 extends c1class c3 extends c1class c4 extends c2, c3

Does an instance of c4 have one instance of field x shared by c2 and c3, or does c4 have two x fields: one inherited from c2 and 
one inherited from c3? Some languages opt for sharing, some not, and some provide a choice, at least in some cases. The complexity of 
this problem has led to a design trend favoring single inheritance of classes, but multiple inheritance only for interfaces, which avoids 
most of these difficulties.

Add multiple inheritance to the language. Extend the syntax as necessary. Indicate clearly what issues arise when resolving method and 
field name conflicts. Characterize the sharing issue and its resolution.

Exercise 5.32 [ ] Invent, or discover through reading, a technique for simulating multiple inheritance given single inheritance. 
Demonstrate the technique by writing and testing a sample program that uses this simulation technique.



 

Further Reading

Simula 67 (Birtwistle, Dahl, Myhrhaug, & Nygaard, 1979) is generally regarded as the first object-
oriented language. The object-oriented metaphor was extended by Smalltalk in (Goldberg & 
Robson, 1983) and by Actors in (Hewitt, 1977). Both use human interaction and sending and 
receiving messages as the metaphor for explaining their ideas. Scheme grew out of Sussman and 
Steele's attempts to understand Hewitt's work. (Springer & Friedman, 1989) and (Abelson, 
Sussman, & Sussman, 1985; 1996) both provide further examples of object-oriented programming 
in Scheme and discuss when functional and imperative programming styles are most appropriate. 
(Steele, 1990) and (Kiczales, des Rivières, & Bobrow, 1991) describe CLOS, the powerful object-
oriented programming facility of Common Lisp. The derivation at the end of the chapter is based 
on the implementation of C++ method tables in (Ellis & Stroustrup, 1992).



 

6 Objects and Types.

In chapter 4, we showed how a type system could inspect a program to guarantee that it would 
never execute an inappropriate operation. No program that passes the checker will ever attempt to 
apply a non-procedure to an argument, or to apply a procedure or primitive to the wrong number 
of arguments or to an argument of the wrong type.

In this chapter, we apply this technology to an object-oriented language. In addition to the safety 
properties listed above, no program that passes our checker will ever send a message to an object 
for which there is no corresponding concrete method, or send a message to an object with the 
wrong number of arguments or with arguments of the wrong type.

In addition to guaranteeing these safety properties, our type analyzer produces information that 
can be used to optimize programs in our language.

In section 6.1 we present this language and discuss its syntax and semantics. In section 6.2 we 
present a checker that guarantees these safety properties. Last, in section 6.3, we show how the 
type information can be used to produce significant optimizations in the execution of our 
programs.

6.1 A Simple Typed Object-Oriented Language

A sample program in our typed object-oriented language is shown in figure 6.1. This program 
defines a class tree, which has a sum method that finds the sum of the values in the leaves, as in 
figure 5.2, and an equal method, which takes another tree and recursively descends through the 
trees to determine if they are equal. We consider the latter method in more detail below.



 

The major new features of the language are:

• Fields and methods are specified with their types, using a syntax similar to that used in chapter 4.

• The concept of abstract classes and methods is introduced.

• The concept of casting is introduced, and the instanceof test from exercise 5.11 is 
incorporated into the language.

• The concept of subtype polymorphism is added to the language.

We consider each of these items in turn.

The new productions for the language are shown in figure 6.2. We add a void type as the type of 
a set operation, and list types as in exercise 4.8. As in section 4.3, we add identifiers to the set of 
type expressions, but for this chapter, an identifier used as a type is associated with the class of the 
same name. We consider this correspondence in more detail below. Classes take an optional 
abstraction specifier. Methods require their result type to be specified, along with the types of their 
arguments, using a syntax similar to that used in chapter 4. A new kind of method, called an 
abstract method, is added. An abstract method does not have a body. Last, two new expressions 
are added, cast and instanceof.

An abstract class is one which is not intended to be instantiated. For example, in figure 6.1, the 
intention is that every tree is either an interior node or a leaf node; there are never any objects of 
class tree. This restriction can be enforced by a run-time check whenever a new object is 
created. A class that is not abstract is said to be concrete (or instantiable).

An abstract method is a placeholder for methods to be supplied by each subclass of a class. For 
example, in figure 6.1, we need to be sure that every object of class tree has a sum method. 
Therefore we include an abstract sum method in class tree. In our interpreter, an abstract 
method is just another kind of method, and apply-method will signal an error if an abstract 
method is applied. The checker, however, will verify that every concrete subclass of tree 
supplies a concrete sum method, so that no well-typed program will ever attempt to apply an 
abstract method.

The next feature we add to the language is instanceof. The expression instanceof exp 
name returns a true value whenever the object obtained by evaluating exp is an instance of name 
or of one of its descendants. Casting complements instanceof. For example, our sample 
program includes the method



 

abstract class tree extends object  method int initialize () 1  abstractmethod int sum ()  abstractmethod bool equal (tree t)
class interior_node extends tree  field tree left  field tree right  method void initialize (tree l, tree r)    begin      set left = l;      set right = r    end  method tree getleft () left  method tree getright () right  method int sum () + (send left sum (), send right sum ())  method bool equal (tree t)    if instanceof t interior_node    then if send left             equal
(send cast t interior_node getleft ())         then send right               equal(send cast t interior_node getright ())         else false    else falseclass leaf_node extends tree  field int value  method void initialize (int v) set value = v  method int sum () value  method int getvalue () value  method bool equal (tree t)    if instanceof t leaf_node    then zero?(-(value,
send cast t leaf_node getvalue ()))    else falselet o1 = new interior_node(           new interior_node(             new leaf_node(3),             new leaf_node(4)),           new leaf_node(5))in list(send o1 sum(),        if send o1 equal(o1) then 100 else 200)

Figure 6.1 A sample program in the typed object-oriented language



 

Figure 6.2 New productions for the typed object-oriented language



 

  method bool equal
(tree t)    if instanceof t interior_node    then if send left             equal
(send cast t interior_node getleft ())         then send right               equal
(send cast t interior_node getright ())         else false    else false

The expression cast t interior_node checks to see if the value of t is in fact an instance of 
interior_node. If it is, the value of t is returned; if not, an error is signalled. An instanceof 
expression returns a true value if and only if the corresponding cast would succeed. Hence in this 
example the cast is guaranteed to succeed, since it is guarded by the instanceof. The cast, in turn, 
guards the use of send ... getleft (). The cast expression is guaranteed to return a value of class 
interior_node, and therefore it will be safe to send this value a getleft message.

Exercise 6.1 [ ] Write an equality predicate for the class tree that does not use instanceof or cast. 
Hint: what is needed here is a double dispatch, in place of the single dispatch provided by the usual methods. This can 
be simulated as follows: Instead of asking the class of the argument t, the current tree should send back to t a message 
that encodes its own class, along with parameters containing the values of the appropriate fields.

The last new concept in the language is subtype polymorphism. This refers to the idea that an object of a 
certain class can also be regarded as a value of any of its ancestor classes. This idea is used, for example, 
in instanceof. We see it in our example: interior_node requires two arguments of type tree, 
but there are no objects of class tree. There are only objects of subclasses of tree. Subtype 
polymorphism means that a procedure or method that expects an argument of a certain class can also take 
an argument of any subclass of that class. This comes for free in the interpreter, but it requires some 
modifications to the checker, which we discuss in section 6.2.

For our implementation, we begin with the interpreter of section 5.4.4. Since most of the interpreter's 
activity is independent of types, we modify it as little as possible, and adopt a laissez-faire strategy 
whenever we can. Since it is impossible to apply an abstract method, we modify method-decl->body 
to raise an error when the program attempts to do so. See figure 6.3.

Finally, we add two new clauses to eval-expression to evaluate instanceof and cast 
expressions:



 

(define apply-method  (lambda (method host-
name self args)    (let ((ids (method->ids method))          (body (method-
>body method))          (super-name (method->super-
name method))          (field-ids (method->field-
ids method))          (fields (object->fields self)))      (eval-
expression body        (extend-env          (cons '%
super (cons 'self ids))          (cons super-
name (cons self args))          (extend-env-refs field-ids fields (empty-
env)))))))(define method->body  (lambda (method)    (method-decl-
>body (method->method-decl method))))(define method-decl-
>body  (lambda (md)    (cases method-decl md      (a-method-decl (result-
texp name arg-type-exps ids                       method-
body)        method-body)      (an-abstract-method-decl (result-
texp name                                 arg-type-exps ids)        (eopl:
error 'method-decl->body          "Can't take body of abstract method")))))

Figure 6.3 apply-method in the presence of abstract methods

      (cast-exp (exp name)        (let ((obj (eval-
expression exp env)))          (if (is-subclass? (object->class-
name obj) name)            obj            (eopl:error 'eval-
expression              "Can't cast object to type ~s:~%
~s"))))      (instanceof-exp (exp name)        (let ((obj (eval-
expression exp env)))          (if (is-subclass? (object->class-
name obj) name)            the-true-value            the-false-value)))



 

The procedure is-subclass? traces the parent link of the first class structure until it either finds the second one or 
stops at object:

(define is-
subclass?  (lambda (name1 name2)    (if (eqv? name1 name2)      #t      (let ((class (lookup-
class name1)))        (let ((super-name (class->super-name class)))          (if (eqv? super-
name 'object)            #f            (is-subclass? super-name name2)))))))

This completes the modification of the interpreter for the language of this section.

Exercise 6.2 [ ] Complete the implementation of this interpreter, and test it on a substantial body of programs.

Exercise 6.3 [ ] Devise a test plan for this interpreter so that every clause is exercised.

Exercise 6.4 [ ] Augment the interpreter so that it detects any attempt to create an object of an abstract class.

6.2 The Type Checker

We now turn to the checker for this language. The goal of the checker is to guarantee a set of safety properties. For our 
language, these properties are those of the underlying procedural language, plus the following properties of the object-
oriented portion of the language: no program that passes our type checker will ever

• send a message to an object for which there is no corresponding method,

• send a message to an object with the wrong number of arguments or with arguments of the wrong type, or

• attempt to create an object of an abstract class, or an object of a concrete class in which one of the required abstract 
methods of a superclass has not been supplied.

Since the fields of an object are created uninitialized, and we make no attempt to verify that the initialize methods 
actually initialize all the fields, it will still be possible for a program to reference an uninitialized field.



 

Hence our safety properties do not preclude attempting to operate on an uninitialized value. 
Similarly, because it is in general impossible to predict the type of an initialize method, our 
checker will not prevent the explicit invocation of an initialize method with the wrong 
number of arguments or arguments of the wrong type, but the implicit invocation of 
initialize by new will always be correct. We discuss these issues in more detail below.

In chapter 4, we emphasized a rule-based derivation of types: for each kind of expression, we 
wrote down a rule that showed how to derive the type of the entire expression from the types of its 
subexpressions. In more complex situations, however, it may not be entirely clear what the rule 
should be for a given expression. In that case, we need some principles to help us decide on the 
rule the checker should use.

The goal of the checker is to predict successfully the type of each expression, given the types of its 
free variables. As a result, the procedure type-of-expression bore a considerable 
resemblance to eval-expression: instead of evaluating each expression in an environment 
containing the values of the variables, type-of-expression processed each expression in a 
type environment containing the types of the variables. The analogy between ordinary 
computation and such a partial computation, getting partial information about the answers from 
partial information about the inputs, is called the principle of abstract interpretation.

We develop our checker using the principle of abstract interpretation. At every stage we proceed 
as if we were writing an interpreter, except that we have only the types of the variables available 
to us. We reuse as much as possible of the code and data structures of the original interpreter, 
except that we have only the type information available.

We begin with the types. In chapter 4, it was a fairly simple matter to determine when a value was 
of the right type: an integer value was of type int, a boolean value was of type bool, and a 
procedure value was of type (t1 * ... * tn -> t) if and only if whenever it was given 
arguments of types t1, ..., tn it would produce a value of type t.

In the object-oriented paradigm, the situation is more complicated because we have two 
competing notions: type and class. Every object has a class. At first glance, the class of an object 
appears to be like a type in a dynamic type system: it is a tag that identifies the set to which the 
object belongs. This notion, however, is not enough. In an object-oriented system, if class c2 
extends c1, then an object of class c2 can be used in any context in which an object of class c1 can 
appear: the c2 object has all the methods of the c1 object, so it can accept any message that the c1 
object could accept. For example, in



 

the program of figure 6.1, the equal method must accept both interior nodes and leaves, that is, it 
must accept any object whose class is a subclass of tree. This is subclass polymorphism.

Hence we adopt the following policy: we introduce a type c for each class c, and we say that an 
object is a value of type c whenever its class is either c or a class that is a subclass of c. Using this 
terminology, we can say that instanceof x c tests whether the value of x has type c, not 
whether it has class c.

To implement this policy, we add to the types of section 4.2 a new type for each class. For 
convenience in testing, we also include list types, as in exercise 4.8.

We interpret an identifier in a type position as describing a class; this is done by adding the 
production

in figure 6.2, and modifying expand-type-exp to map a class-type-exp to a class-
type (figure 6.4).

The checker begins with the implementation of type-of-program. By the principle of abstract 
interpretation, type-of-program should be as similar as possible to eval-program. Where 
the interpreter has an environment env mapping identifiers to values, the checker will have a type 
environment tenv mapping identifiers to types. Where the interpreter has a class environment 
mapping class names to class structures, the checker will have a static class environment mapping 
class names to static classes, which will contain the static information about each class. Compare 
type-of-program to eval-program:



 

Figure 6.4 expand-type-expression

(define eval-program  (lambda (pgm)    (cases program pgm      (a-
program (c-decls exp)        (elaborate-class-decls! c-decls)        (eval-
expression exp (init-env))))))(define type-of-
program  (lambda (pgm)    (cases program pgm      (a-program (c-
decls exp)        (statically-elaborate-class-decls! c-decls)        (type-
of-expression exp (empty-tenv))))))

The procedure statically-elaborate-class-decls!, which checks all of the class 
declarations and sets up the static class environment that will be used by the rest of the checker, is 
invoked by type-of-program. Then type-of-expression finds the type of the program 
body.

Next we consider what will be in the static class environment. The ordinary class environment 
maps each class name to a class containing its fields, methods, and the name of its parent. Hence 
the static class environment should map each class name to a static class containing the types of its 
fields, the types of its methods, and its parent. As before, each class contains all of the fields and 
methods accessible from that class, not just the ones declared in the class. We also keep track of 
whether the class is concrete or abstract.



 

For each method, we construct a static method, consisting of its static information, including its 
name, whether or not it is abstract, its type (as a proc-type), and the name of its superclass.

(define-datatype static-class static-class?  (a-static-class    (class-
name symbol?)    (super-name symbol?)    (specifier abstraction-
specifier?)    (field-ids (list-of symbol?))    (field-types (list-
of type?))    (methods static-method-environment?)))(define-
datatype static-method-struct static-method-struct?  (a-static-method-
struct    (method-name symbol?)    (specifier abstraction-
specifier?)    (type type?)    (super-name symbol?)))(define static-method-
environment?  (list-of static-method-struct?))

We build the static class environment by initializing it to an empty environment, and then 
processing each class and adding it in turn.

(define statically-elaborate-class-decls!  (lambda (c-
decls)    (initialize-static-class-env!)    (for-each statically-elaborate-
class-decl! c-decls)))

The procedure statically-elaborate-class-decl! processes a class declaration. First 
it finds the names and types of all the fields of this class, consulting the superclass if needed. It 
uses statically-lookup-class to look up the superclass in the static class environment, 
since the ordinary class environment does not exist. It then collects all the method declarations, 
using the procedure statically-roll-up-method-decls to model the overriding of 
methods, and adds the static class information to the static class environment. Then it verifies, 
using check-for-abstract-methods!, that if the current class is concrete, then all its 
methods are concrete. Finally, it checks each of the methods. See figure 6.5.

Exercise 6.5 [ ] Why must the class information be added to the static class environment before the 
methods are checked? (Hint: what happens if a method body invokes a method on self?)



 

(define statically-elaborate-class-decl!  (lambda (c-decl)    (cases class-
decl c-decl      (a-class-decl (specifier class-name super-
name                      field-texps field-ids m-
decls)        (let ((field-
ids                (append                  (if (eqv? super-
name 'object)                    '()                    (static-class-
>field-ids                      (statically-lookup-class super-
name)))                  field-ids))              (field-
types                (append                  (if (eqv? super-
name 'object)                    '()                    (static-class-
>field-types                      (statically-lookup-class super-
name)))                  (expand-type-expressions field-
texps)))              (methods                (statically-roll-up-method-
decls                  m-
decls                  specifier                  class-
name                  super-name)))          (add-to-static-class-
env!            (a-static-class              class-name              super-
name              specifier              field-ids              field-
types              methods))          (check-for-abstract-
methods!            specifier methods class-name)          (for-
each            (lambda (m-decl)              (typecheck-method-decl! m-
decl                class-name super-name field-ids field-
types))            m-decls))))))

Figure 6.5 statically-elaborate-class-decl!



 

(define statically-roll-up-method-decls  (lambda (m-decls specifier self-
name super-name)    (statically-merge-methods self-
name      (if (eqv? super-name 'object)        '()        (static-class-
>methods          (statically-lookup-class super-
name)))      (map        (lambda (m-decl)          (method-decl-to-static-
method-struct            m-decl specifier self-name super-name))        m-
decls))))

Figure 6.6 statically-roll-up-method-decls

Exercise 6.6 [ ] Write check-for-abstract-methods!.

We next consider statically-roll-up-method-decls, shown in figure 6.6. It is the 
static version of roll-up-method-decls (section 5.4.4). It produces a list of static methods 
by calling statically-merge-methods on the class name, the list of static methods from 
the superclass, and a static method for each method declared in the current class. The procedure 
method-decl-to-static-method-struct expands the type expressions and rearranges 
the data to produce a static method from a method declaration. See figure 6.7.

The procedure statically-merge-methods (figure 6.8) produces a list of static methods, 
taking inheritance into account, in the same order in which merge-methods creates the list of 
methods at run time. Methods are placed in their order of declaration, from oldest to youngest. 
However, if a method of an ancestor class is overridden, the newer method is installed in place of 
the ancestor method. Hence in each class there is at most one method for each method name, as 
shown in figure 5.14.

The arguments to statically-merge-methods are the static structures for the methods of 
the superclass and the static structures for the methods of the host class. There are three cases to 
consider. The first case is the simplest. If there are no super methods, then we simply return the 
remaining current methods.



 

(define method-decl-to-static-method-struct  (lambda (m-
decl specifier self-name super-name)    (cases method-decl m-decl      (a-
method-decl (result-texp name id-texps ids body)        (a-static-method-
struct          name          (concrete-specifier)          (proc-
type            (expand-type-expressions id-texps)            (expand-type-
expression result-texp))          super-name))      (an-abstract-method-
decl (result-texp name id-texps ids)        (a-static-method-
struct          name          (abstract-specifier)          (proc-
type            (expand-type-expressions id-texps)            (expand-type-
expression result-texp))          super-name)))))

Figure 6.7 method-decl-to-static-method-struct

Next we consider whether the first super method is being overridden. In that case, we must check 
to see whether the type of the overriding method is the same as that of the method being 
overridden. We must check this because when we invoke a method of some object, say of type c, 
we know only that the object will be either of c or of one of its subclasses. If the type of the 
method were different in the subclass, we would have no way of guaranteeing that it was being 
called with correct arguments.

The one exception to this rule is the method initialize. The type of initialize will 
generally change as we go from class to subclass, as in figure 6.1. Hence it is impossible to predict 
the type of an object's initialize method given only the type of the object. So, our checker 
cannot prevent an explicit invocation of an initialize method with incorrect arguments. Since 
initialize is typically called only at object creation time, this is not a serious flaw. If the 
overriding method has the same type as the overridden one, or if we are dealing with 
initialize method, we replace the overridden method by the overriding one. As part of the 
recursion, we remove the overriding one from the current list of methods to be merged in.



 

(define statically-merge-methods  (lambda (class-name super-methods methods)    (cond      ((null? super-
methods) methods)      (else        (let ((overriding-method                (statically-lookup-
method                  (static-method->method-name                    (car super-
methods))                  methods)))          (if overriding-
method            (if (or                  (eqv?                    'initialize                    (static-
method->method-name                      (car super-
methods)))                  (equal?                    (static-method->type overriding-
method)                    (static-method->type                      (car super-
methods))))              (cons overriding-method                (statically-merge-
methods                  class-name                  (cdr super-methods)                  (remove-
method overriding-method methods)))              (eopl:error 'statically-merge-
methods                (string-append                  "~%
Overriding method ~s in class ~s of"                  "wrong type~% original: ~s~%
new: ~s")                (static-method->method-name overriding-method)                class-
name                (static-method->type (car super-methods))                (static-method-
>type overriding-method)))            (cons (car super-methods)              (statically-merge-
methods                class-name                (cdr super-methods)                methods))))))))

Figure 6.8 statically-merge-methods



 

(define typecheck-method-decl!  (lambda (m-decl specifier self-name super-
name field-ids            field-types)    (cases method-decl m-
decl      (a-method-decl (result-texp name id-
texps ids body)        (let ((id-types (expand-type-expressions id-
texps)))          (let ((tenv                  (extend-
tenv                    (cons '%
super (cons 'self ids))                    (cons (class-type super-
name)                      (cons (class-type self-
name)                        id-types))                    (extend-
tenv                      field-ids field-types (empty-
tenv)))))            (let ((body-type (type-of-
expression body tenv)))              (check-is-
subtype!                body-type                (expand-type-
expression result-texp)                m-decl)))))      (an-abstract-
method-decl (result-texp name id-texps ids)        #t))))

Figure 6.9 typecheck-method-decl!

Last, if the super method is not being overridden, we place it in the output and remove it from the 
list of super methods.

A consequence of this organization is that the super method of a particular method is guaranteed 
to be in the same position throughout the inheritance chain. The effect is to append the non-
overriding methods to the end of the super methods, and replace those super methods that are 
being overridden.

Once all the static method information is collected, the static class information is added to the 
static class environment. Then each of the method declarations is checked, using typecheck-
method-decl!. We build a type environment that matches the run-time environment built by 
apply-method, and then verify that the type of the body matches its declared type. For an 
abstract method, there is nothing to check. See figure 6.9.

By the principle of subtype polymorphism, the result of the body can be of any subtype of the 
specified result type. Hence in place of check-equal-type!, we call check-is-
subtype!, which in turn calls is-subtype?, to compare the calculated and specified types of 
the body.



 

(define check-is-subtype!  (lambda (t1 t2 exp)    (if (is-
subtype? t1 t2)      #t      (eopl:error 'check-is-subtype!        "~%
~s is not a subtype of ~s in ~%~s"        (type-to-external-
form t1)        (type-to-external-form t2)        exp))))(define is-
subtype?  (lambda (t1 t2)    (cases type t1      (class-
type (name1)        (cases type t2          (class-
type (name2)            (statically-is-
subclass? name1 name2))          (else #f)))      (else (equal? t1 t2)))))

The static class environment built for the sample program of figure 6.1 is shown in figure 6.10. 
The static classes are in reverse order, reflecting the order in which the class environment is built. 
Each of the three classes has its methods in the same order, with the same type, as desired.

Once all the method declarations are checked, we check the body of the program, using type-
of-expression.

Before adding any clauses to type-of-expression, we must modify this procedure to deal 
with subtype polymorphism. If class c2 extends c1, then an object of class c2 can be used in any 
context in which an object of class c1 can appear. For example, in the program of figure 6.1, the 
initialize method of interior_node must accept as arguments both interior nodes and 
leaves. The same considerations apply to any procedure. If we wrote a procedure proc (tree 
t) 1, that procedure should be able to take as an actual parameter new leaf (3), despite the 
fact that the procedure was of type (tree -> int) and the argument was of type leaf. The 
application should be legal whenever the type of each actual is a subtype of the corresponding 
formal parameter.

So we must modify type-of-application to allow this. Luckily, only one line need be 
changed:



 

((a-static-class leaf_node tree (concrete-specifier)   (value) ((atomic-
type int))   ((a-static-method-struct      initialize      (concrete-
specifier)      (proc-type ((atomic-type int)) (atomic-
type void))      tree)    (a-static-method-struct      sum      (concrete-
specifier)      (proc-type () (atomic-type int))      tree))) (a-static-
class interior_node tree (concrete-specifier)   (left right) ((class-
type tree) (class-type tree))   ((a-static-method-
struct      initialize      (concrete-specifier)      (proc-
type        ((class-type tree) (class-type tree))        (atomic-
type void))      tree)    (a-static-method-struct      sum      (concrete-
specifier)      (proc-type () (atomic-type int))      tree))) (a-static-
class tree object (abstract-specifier)   () ()   ((a-static-method-
struct      initialize      (concrete-specifier)      (proc-
type () (atomic-type int))      object)    (a-static-method-
struct      sum      (abstract-specifier)      (proc-type () (atomic-
type int))      object))))

Figure 6.10 Static class environment built for the sample program



 

(define type-of-application  (lambda (rator-type rand-
types rator rands exp)    (cases type rator-type      (proc-type (arg-
types result-type)        (if (= (length arg-types) (length rand-
types))          (begin            (for-each|             check-is-
subtype!              rand-types arg-types rands)            result-
type)          (eopl:error 'type-of-expression            (string-
append              "Wrong number of arguments in expression ~s:"              " ~
%expected ~s~%got ~s")              exp              (map type-to-external-
form arg-types)              (map type-to-external-form rand-
types))))      (else        (eopl:error 'type-of-
expression          "Rator not a proc type:~%~s~%
had rator type ~s"          rator (type-to-external-form rator-type))))))

We may now proceed to include a new clause in type-of-expression for each additional kind of 
expression in our language. In each case, we find the type of each subexpression and pass this information 
to an auxiliary procedure; we also pass the original expression for error reporting. See figure 6.11.

We consider each expression (figure 6.12) in turn. For a new expression, we first retrieve the class 
information for the class name. If there is no class associated with the name, a type error is reported. We 
then check to see if the class is abstract. If it is, a type error is reported. Last, we call type-of-
method-app-exp with the types of the operands to see if the call to initialize is safe. If these 
checks succeed, then the execution of the expression is safe. Since the new expression returns a new 
object of the specified class, the type of the result is the type corresponding to the specified class.

Method applications and super calls have much in common, so we deal with them together. For a method 
application, we verify that the expression denoting the target of the application is in fact an object by 
checking that its type is a class-type. If it is, we retrieve the class information associated with the 
class name. If either of these type checks fail, a type error is reported. For a super call, we need to find the 
parent of the class in which the current method was declared. This is bound in the type environment by 
typecheck-method-decl!, and is retrieved by looking up %super. We also pass a boolean value 
to indicate whether or not this was a super call.



 

     (new-object-exp (class-name rands)       (type-of-new-obj-
exp         class-name         (types-of-
expressions rands tenv)         rands         exp))     (method-app-
exp (obj-exp msg rands)       (type-of-method-app-exp         (type-of-
expression obj-exp tenv)         msg         (types-of-
expressions rands tenv)         rands         exp))     (super-call-
exp (msg rands)       (type-of-super-call-exp         (class-type-
>name (apply-tenv tenv '%super))         msg         (types-of-
expressions rands tenv)         rands         exp))     (cast-
exp (exp1 class-name)       (type-of-cast-exp         (type-of-
expression exp1 tenv)         class-name         exp))     (instanceof-
exp (exp1 class-name)       (type-of-instanceof-exp         (type-of-
expression exp1 tenv)         class-name         exp))

Figure 6.11 type-of-expression clauses for object-oriented expressions

Once this information is collected, type-of-method-app-or-super-call, shown in 
figure 6.13, obtains the type of the method from the static class structure. If there is no method 
with the specified name in the class, then a "missing method" type error is reported. It then calls 
type-of-application to see whether these arguments are legal for the method. Last, it 
checks to see whether the call is a super call or not. If the call was a super call, then the method 
must be concrete. If the call was an ordinary call, then



 

(define type-of-new-obj-exp  (lambda (class-name rand-
types rands exp)    (cases static-class (statically-lookup-class class-
name)      (a-static-class        (class-name super-name specifier field-
ids          field-types methods)        (cases abstraction-
specifier specifier          (abstract-specifier ()            (eopl:
error 'type-of-new-obj-
exp              "Can't instantiate abstract class ~s"              class-
name))          (concrete-
specifier ()            (begin              (type-of-method-app-
exp                (class-type class-
name)                'initialize                rand-
types                rands                exp)              (class-
type class-name))))))))(define type-of-method-app-exp  (lambda (obj-
type msg rand-types rands exp)    (cases type obj-type      (class-
type (class-name)        (type-of-method-app-or-super-
call          #f class-name msg rand-
types rands exp))      (else        (eopl:error 'type-of-method-app-
exp          "~%Can't send message to non-object ~s in ~%~s"          obj-
type exp)))))(define type-of-super-call-exp  (lambda (super-name msg rand-
types rands exp)    (type-of-method-app-or-super-call      #t super-
name msg rand-types rands exp)))

Figure 6.12 Checking the chapter 5 expressions



 

the method may be either concrete or abstract; when an actual object is supplied, we know the 
method will be concrete because of the check in check-for-abstract-methods!. To see 
this, consider the following example:

abstract class c1 extends object  abstractmethod int m1 ()
class c2 extends c1  method int m1 () 2  method int m2 () super m1()
class c3 extends c1  method int m1 () 3let f = proc (c1 x) send x m1
()    o2 = new c2()    o3 = new c3()in list((f o2), (f o3), send o2 m2())

Here the send x m1() is legal, even though m1 is abstract in c1, because m1 will be concrete 
in both of c1's concrete subclasses. But the super m1() will cause an error, because it specifies 
that c1's method for m1 should be used, and c1 has no concrete method for m1.

An instanceof expression executes without an error so long as its argument is an object. So 
type-of-instanceof-exp returns bool so long as its argument is any object type and the 
class name is that of a class:

(define type-of-instanceof-exp  (lambda (ty class-
name exp)    (cases type ty      (class-type (name)        (if (statically-
is-subclass? class-name 'object)          bool-type          (eopl:
error 'type-of-instanceof-exp            "~%Unknown class ~s in ~%
~s" name exp)))      (else        (eopl:error 'type-of-
expression          "~%~s not an object type in ~%~s" ty exp)))))

For a cast expression, the situation is a little more complicated. Some cast expressions may 
fail at run-time. In general, it is impossible to guarantee statically that a cast expression will 
succeed. Hence the best the checker can do is to reject any cast expression that will always fail. 
At run-time, every cast operation should be guarded by a corresponding instanceof.

The expression cast x c1 will succeed if the class of x is either the class c1 or one of c1's 
subclasses. If the type of x is c2, then the potential values of



 

(define type-of-method-app-or-super-call  (lambda (super-call? host-
name msg rand-types rands exp)    (let ((method            (statically-
lookup-method msg              (static-class-
>methods                (statically-lookup-class host-
name)))))      (if (static-method-struct? method)        (cases static-
method-struct method          (a-static-method-struct (method-
name specifier                                    method-type super-
name)            (let ((result-type                    (type-of-
application                      method-type rand-
types '() rands exp)))              (if super-
call?                (cases abstraction-
specifier specifier                  (concrete-specifier () result-
type)                  (abstract-specifier ()                    (eopl:
error 'type-of-method-or-super-call                      (string-
append                        "~%
Super call on abstract method ~s"                        "in class ~s in~%
~s")                      msg host-name exp)))                result-
type))))        (eopl:error 'type-of-method-app-exp          "~%
Class ~s has no method for ~s in ~%~s"          host-name msg exp)))))

Figure 6.13 type-of-method-app-or-super-call

x may have classes that are any subclass of c2. So the cast can succeed only if the subclasses of 
c1 and the subclasses of c2 have a non-empty intersection. If either c1 is a subclass of c2 or c2 
is a subclass of c1, or they are the same, this intersection will be non-empty. Otherwise c1 and 
c2 are incomparable in the inheritance hierarchy, and their descendants will be disjoint. This leads 
to the definition of type-of-cast-exp, below.



 

(define type-of-cast-
exp  (lambda (ty name2 exp)    (cases type ty      (class-
type (name1)        (if (or              (statically-is-
subclass? name1 name2)              (statically-is-
subclass? name2 name1))          (class-type name2)          (eopl:
error 'type-of-expression            "~%~s incomparable with ~s in ~%
~s"            ty name1 exp)))      (else        (eopl:error 'type-of-
expression          "~%~s not an object type in ~%~s"          ty exp)))))

This completes the presentation of the checker.

Exercise 6.7 [ ] Complete the implementation of the checker.

Exercise 6.8 [ ] Modify the design of the language so that every field declaration contains an expression that 
is used to initialize the field. Such a design has the advantage that a checked program will never refer to an 
uninitialized value.

Exercise 6.9 [ ] Extend the checker to handle fieldref and fieldset, as in exercise 5.14.

Exercise 6.10 [ ] Extend the checker of this section to handle lettype. Hint: treat type identifiers in the 
same manner as in section 4.3, and initialize the type environment to bind each class name to a corresponding 
class type.

Exercise 6.11 [ ] Our definition of is-subtype? is unnecessarily restrictive when dealing with 
procedure types. For example, if c2 extends c1, then a procedure of type (int -> c2) could be used 
whenever a procedure of type (int -> c1) is expected, since the result of the first procedure (a value of 
type c2) can always be used where the result of the second procedure is expected. Hence we should count 
(int -> c2) as a subtype of (int -> c1). Similarly, a procedure of type (c1 -> int) 
can be used in place of a procedure of type (c2 -> int), since the first procedure will accept all the 
arguments that the second would. Hence (c1 -> int) should be a subtype of (c2 -> int). Of 
course, the same reasoning works for any pair types such that t2. <t1. Modify is-subtype? to accept 
these possibilities (called deep subtyping).

Exercise 6.12 [ ] An interface is a collection of method names and their types. We say that a class 
implements an interface if it supplies methods of the correct type for each of the names in the interface. We can 
make an interface into a type: if i1 is an interface, an object is of type i1 if it is an instance of a class that 
implements i1. Interfaces provide a cheap way of achieving most of the benefits of multiple inheritance 
(exercise 5.31).



 

For example, we could write

interface summable  int sum ()interface printable  void print ()
class interior_node  extends tree  implements summable  implements printable  method void print () ...  ...
let p = proc (summable o) add1(send o sum())    q = proc (printable o) send o print()in ...

and we could apply p to any object of a class that implemented summable, and q to any object of a class that implemented printable, regardless 
of where those classes lay in the inheritance hierarchy.

Extend the checker to handle interfaces. Rewrite the example of figure 6.1 to make tree an interface rather than an abstract class.

Exercise 6.13 [ ] With the extensions in the preceding exercise, our language handles single inheritance of implementation and multiple inheritance of 
interfaces into classes. We could also define interfaces by inheritance. Extend the language and the checker to allow interfaces to inherit from other interfaces.

6.3 The Translator

In this section we show how the information generated by the checker can be used to optimize the programs in our typed object-oriented 
language. We write a translator that processes our language to a slightly extended language, performing three optimizations:

1. Method lookups are replaced by direct access to the slot in which the method is stored (exercise 5.18),

2. Calls to instanceof whose result is predictable are replaced by boolean literals, and

3. Casts that are guaranteed to succeed are eliminated.



 

Method lookups are replaced because if we know the type of an object, we can predict where each method can be found in the object's method vector. Consider the following example:

abstract class c1 extends object  method int initialize () 1  method int m1 () 11  abstractmethod int m2 ()
class c2 extends c1  method int m1 () 21  method int m2 () 22  method int m3 () 23class c3 extends c2  method int m4 () 34class c4 extends c3  method int m2 () 42  method int m5 () 45proc (c3 o) send o m2
()

In an object of class c3, the methods are laid out in the method table in the following order: m1 m2 m3 m4. Even though m1 and m2 are overridden, they keep their place in the list. Furthermore, if class c3 is extended, as it is by c4, any additional methods 
will be added to the right of these four, and these four methods will be stored in the first four positions in the vector. Hence, if variable x is of type c3, then we know that x will be bound to an object whose class is either c3 or one of its subclasses, and hence 
the m1 method of the object will be in position 0 of the table, the m2 method will be in position 1, the m3 method will be in position 2, and the m4 method will be in position 3. In particular, in the method application in the last line of the program, we know 
that m2 will always be found in position 1.

To take advantage of this fact, let us add to our language a new expression apply-method-indexed, with syntax given by the production

We assume that this construct will not appear in our source programs. The goal of our translator will be to analyze the source program and convert all ordinary method applications to indexed method applications. For instance, in the preceding example, the 
method application with abstract syntax tree (method-app-exp (var-exp o) m2 ()) should be replaced by the abstract



 

syntax tree (apply-method-indexed-exp (var-exp o) 1 ()). Similarly, in the 
sample program of figure 6.1, send left sum() should be converted to the abstract sytnax 
tree (apply-method-indexed-exp (var-exp left) 1 ()).

The translator begins by type-checking the program. We do not use the resulting type, but this sets 
up the static class environment and checks the entire program for type errors. It then translates the 
program by doing a simple, grammar-directed traversal of the program:

(define translation-of-program  (lambda (pgm)    (let ((pgm-type (type-of-
program pgm)))      (cases program pgm        (a-program (c-
decls exp)          (a-program            (translation-of-class-decls c-
decls)            (translation-of-expression exp (empty-tenv))))))))

We first consider translation-of-expression. This procedure takes two arguments, an 
expression and a type environment. It recurs through the expression, passing along a type 
environment. For expressions involving binding, it recurs on the subexpressions using the same 
type environment that type-of-expression would have used. Generally it simply 
recursively copies the expression. The exceptions are method applications, instanceof 
expressions, and cast expressions, where it performs optimizations based on the types of the 
subexpressions. See figure 6.14. Figure 6.15 shows how the type environments are built (cf. figure 
4.8).

Next we consider the translation of the expressions dealing with objects. A new expression is 
translated by recursion. For a method application, we wish to produce an apply-method-
indexed expression. To find the proper index, we first call type-of-expression to find 
the type obj-type of the object on which the method is being invoked. We then find the 
position pos of the given method in the static method table. Because methods are always laid out 
in the order they are declared, we know that at execution time this method will always be at 
position pos, even if the actual object is of a subclass of class-name. Hence we may safely 
translate the method application as an apply-method-indexed. See figure 6.16. The code 
must specify an action in the case that obj-type is not a class type, or that the method is 
missing, but these cases are impossible, since they will already have been detected by type-of-
expression.



 

(define translation-of-
expression  (lambda (exp tenv)    (cases expression exp      (lit-
exp (number) exp)      (true-exp () exp)      (false-exp () exp)      (var-
exp (id) exp)      (primapp-exp (prim rands)        (primapp-
exp prim          (translations-of-expressions rands tenv)))      (if-
exp (test-exp true-exp false-exp)        (if-exp (translation-of-
expression test-exp tenv)          (translation-of-expression true-
exp tenv)          (translation-of-expression false-exp tenv)))      (app-
exp (rator rands)        (app-exp          (translation-of-
expression rator tenv)          (translations-of-
expressions rands tenv)))      (let-
exp (ids rands body)        (translation-of-let-
exp ids rands body tenv))      (proc-exp (id-
texps ids body)        (translation-of-proc-exp id-
texps ids body tenv))      (letrec-exp (result-texps proc-names id-
texpss idss                    bodies letrec-body)        (translation-of-
letrec-exp          result-texps proc-names id-
texpss idss bodies          letrec-body tenv))      ...      (new-object-
exp (class-name rands)        (new-object-exp class-
name          (translations-of-expressions rands tenv)))      (super-call-
exp (msg rands)        (super-call-exp msg          (translations-of-
expressions rands tenv)))      (method-app-exp (obj-
exp msg rands)        (translation-of-method-app-exp          obj-
exp msg rands tenv))      (instanceof-exp (obj-
exp name)        (translation-of-instanceof-exp obj-
exp name tenv))      (cast-exp (obj-exp name)        (translation-of-cast-
exp obj-exp name tenv))      )))

Figure 6.14 Excerpts from translation-of-expression



 

(define translation-of-proc-exp  (lambda (id-
texps ids body tenv)    (let ((id-types (expand-type-expressions id-
texps)))      (proc-exp        id-texps        ids        (translation-of-
expression body          (extend-tenv ids id-types tenv))))))
(define translation-of-let-
exp  (lambda (ids rands body tenv)    (let ((tenv-for-
body            (extend-tenv              ids              (types-of-
expressions rands tenv)              tenv)))      (let-
exp        ids        (translations-of-
expressions rands tenv)        (translation-of-expression body tenv-for-
body)))))(define translation-of-letrec-exp  (lambda (result-texps proc-
names id-texpss idss bodies            letrec-body tenv)    (let ((id-
typess (map expand-type-expressions id-texpss))          (result-
types            (expand-type-expressions result-texps)))      (let ((the-
proc-types              (map proc-type id-typess result-
types)))        (let ((tenv-for-body                (extend-tenv proc-
names the-proc-types tenv)))          (letrec-exp result-texps proc-
names id-texpss idss            (map              (lambda (id-
types ids body)                (translation-of-
expression body                  (extend-tenv ids id-types tenv-for-
body)))              id-typess idss bodies)            (translation-of-
expression              letrec-body              tenv-for-body)))))))

Figure 6.15 Translating proc, let, and letrec



 

(define translation-of-method-app-exp  (lambda (obj-exp msg rands tenv)    (let ((obj-type (type-of-expression obj-
exp tenv)))      (cases type obj-type        (class-type (class-name)          (let ((class (statically-lookup-class class-
name)))            (let ((pos                    (list-
index                      (lambda (method)                        (eqv?                          msg                          (static-
method->method-name                            method)))                      (static-class-
>methods class))))              (if (number? pos)                (apply-method-indexed-exp                  (translation-of-
expression obj-exp tenv)                  pos                  (translations-of-expressions rands tenv))                (eopl:
error 'translation-of-method-app-exp                  (string-append                    "~%
Shouldn't have gotten here: Class"                    "~s has no method for ~s in ~%~s")                  class-
name                  msg                  (method-app-exp obj-exp msg rands))))))        (else          (eopl:error 'translation-of-
method-app-exp            (string-append              "~%Shouldn't have gotten here:"              " Can't send message to non-
object"              "~s in ~%~s")            obj-type            (method-app-exp obj-exp msg rands)))))))

Figure 6.16 Translating object-oriented constructs



 

For an expression instanceof e c, we compare the type of the object with the target class for 
which it is being tested. If the type of the object is a subclass of the target class, then 
instanceof will always succeed. We would like to simply emit true, but it is possible that 
evaluation of the expression e will cause a side-effect. Hence we emit begin e'; true end, where 
e' is the translation of e. If the type of the target is a subclass of the type of the object, then we 
need to generate a test. On the other hand, if the type of the object and type of the target class are 
incomparable, we know that the instanceof should always be false, so we can emit begin e'; 
false end. Since all the types here are class types, we use statically-is-subclass? to 
compare the classes and hence the types.

For a cast expression, we similarly compare the type of the object and the type of the target class 
to which it is being cast. If the object type is known to be a subclass of the target class, then this is 
an up-cast, which always succeeds, and we merely emit the code that produces the object. If the 
target class is a subtype of the object type, then we must emit the cast expression to perform the 
check at run time. Otherwise, the types are incomparable, and the cast will always fail. This case is 
already detected by type-of-cast-exp, so it should not arise here. See figures 6.17 and 6.18.

The three procedures translation-of-method-app-exp, translation-of-
instanceof-exp, and translation-of-cast-exp constitute the heart of this example. 
They show how type information can be used to eliminate run-time testing and searching.

All that remains is to consider the translation of the class declarations. This is for the most part 
straightforward recursive copying. The exception is that in order to translate the method bodies, 
we must collect enough information to build the same type environment as that used to check the 
body in typecheck-method-decl!. To do this, we pass the name of the class to 
translation-of-method-decl, which statically looks up the class and extracts the needed 
information. See figure 6.19.

This completes the discussion of the translator.

Exercise 6.14 [ ] Complete the implementation of the translator.

Exercise 6.15 [ ] Because the type environment is always laid out in exactly the same way as the run-time 
environment, we can use it to predict the lexical address of each lexical variable reference. Extend the 
translator so that it produces a lexical address for each variable reference, in the style of exercise 3.25. Do 
something similar for variable assignments as well. Modify the interpreter to test this translator's output.



 

(define translation-of-instanceof-exp  (lambda (obj-
exp name tenv)    (let ((obj-type (type-of-expression obj-
exp tenv))          (obj-code (translation-of-expression obj-
exp tenv)))      (cases type obj-type        (class-type (obj-class-
name)          (cond            ((statically-is-subclass? obj-class-
name name)             (begin-exp obj-code (list (true-
exp))))            ((statically-is-subclass? name obj-class-
name)             (instanceof-exp obj-
code name))            (else              (begin-exp obj-code (list (false-
exp))))))        (else          (eopl:error 'translation-of-instanceof-
expression            (string-append              "~%
Shouldn't have gotten here:"              " ~s not an object type in ~%
~s")              obj-type              (instanceof-exp obj-exp name)))))))

Figure 6.17 Translating instanceof

Exercise 6.16 [ ] Modify the translator so that it also predicts the position of a method in a super call.

Exercise 6.17 [ ] For a super call, we can do even better: we can predict at translation time not only the 
position of the method but the method itself. Add to the grammar a new kind of expression, apply-
method-immediate, containing a method and a list of operands. Then modify the translator so that for 
a super call it produces an apply-method-immediate expression containing the actual method to 
be applied. Modify the interpreter to test this translator's output.

Exercise 6.18 [ ] Extend the translator to handle interfaces (exercise 6.12). Construct an example to show 
that if i is an interface, objects of type i may have their methods arranged in different orders. What can be 
done to optimize method application when all that is known about the target object is an interface that it 
implements?

Exercise 6.19 [ ] Extend translation-of-instanceof-exp so that it emits true 
instead of begin e'; true end (and similarly for false) when it can guarantee that the execution of e' 
will have no side effects.



 

(define translation-of-cast-exp  (lambda (obj-exp name tenv)    (let ((obj-
type (type-of-expression obj-exp tenv))          (obj-code (translation-of-
expression obj-exp tenv)))      (cases type obj-type        (class-
type (obj-class-name)          (cond            ((statically-is-
subclass? obj-class-name name)             obj-
code)            ((statically-is-subclass? name obj-class-
name)             (cast-exp obj-
code name))            (else              (eopl:error 'translation-of-cast-
exp                (string-append                  "~%
Shouldn't have gotten here:"                  " ~s incomparable with ~s in ~
%~s")                obj-class-
name                name                (cast-exp obj-
exp name)))))        (else          (eopl:error 'translation-of-cast-
expression            (string-append              "~%
Shouldn't have gotten here:"              "~s not an object type in ~%
~s")              obj-type              (cast-exp obj-exp name)))))))

Figure 6.18 Translating of cast

Exercise 6.20 [ ] The translator, as we have organized it, has the potential to recalculate the type of any 
subexpression many times. Reorganize the translator so that the type checker produces not just a type, but an 
annotated syntax tree for the entire program. The annotated tree should contain all the information in the 
original syntax tree, along with the type of each expression and the type environment in which that expression 
was checked. Then the translator can do a recursive walk over the annotated tree, retrieving the type 
information and the type environment from the tree rather than reconstructing them.

Exercise 6.21 [ ] Another way to organize the translator is to modify the checker so it produces not just 
the type, but the type and the translation of each expression in a single recursive pass over the input tree. 
Rewrite the translator following this organization.



 

(define translation-of-class-decls  (lambda (c-decls)    (map translation-
of-class-decl c-decls)))(define translation-of-class-decl  (lambda (c-
decl)    (cases class-decl c-decl      (a-class-decl (specifier class-
name super-name                      local-field-texps local-field-
ids                      m-decls)        (a-class-decl specifier class-
name super-name          local-field-texps local-field-
ids          (map            (lambda (method-
decl)              (translation-of-method-decl method-
decl                class-name))            m-decls))))))
(define translation-of-method-decl  (lambda (m-decl class-
name)    (let ((class (statically-lookup-class class-
name)))      (let ((super-name (static-class->super-
name class))            (field-ids  (static-class->field-
ids class))            (field-types (static-class->field-
types class)))        (cases method-decl m-decl          (a-method-
decl (result-texp name id-texps ids body)            (let ((id-
types                    (expand-type-expressions id-
texps)))              (let ((tenv                      (extend-
tenv                        (cons '%
super (cons 'self ids))                        (cons (class-type super-
name)                          (cons (class-type class-
name)                            id-types))                        (extend-
tenv field-ids field-types                          (empty-
tenv)))))                (a-method-decl                  result-
texp name id-texps ids                  (translation-of-
expression body tenv)))))          (an-abstract-method-decl (result-
texp name id-texps                                    ids)            m-
decl))))))

Figure 6.19 Translating class and method declarations



 

In chapter 5, we discussed dynamic versus static method dispatch. In static method dispatch, the choice of method depends on an object's type rather than its class. Consider the example

class c1 extends object  method int initialize () 1  method int m1 () 11  staticmethod int m2 () 21class c2 extends c1  method void m1 () 12  staticmethod int m2 () 22let f = proc (c1 x) send x m1
()    g = proc (c1 x) send x m2()    o = new c2()in list((f o),(g o))

When f and g are called, x will have type c1, but it is bound to an object of class c2. The method m1 uses dynamic dispatch, so c2's method for m1 is invoked, returning 12. The method m2 uses static dispatch, so sending an m2 message to x 
invokes the method associated with the type of x, in this case c1, so 21 is returned.

Exercise 6.22 [ ] Modify the interpreter of section 6.1 to handle static methods. Hint: keep type information in the environment so that the interpreter can figure out the type of the target expression in a send.

Exercise 6.23 [ ] In the type checker, static methods are treated in the same way as ordinary methods, except that a static method may not be overridden by a dynamic one, or vice versa. Extend the checker to handle static methods.

Exercise 6.24 [ ] Extend the translator to handle static methods. A send with a static method is translated into an apply-method-immediate, as in exercise 6.17.

Further Reading

The language in this chapter is loosely based on Java, but with far less syntax. (Arnold & Gosling, 1998) is the standard reference, but (Gosling, Joy, & Steele, 1996) is the specification for the serious reader. (Flatt, Krishnamurthi, & Felleisen, 1998) 
formalizes a subset of Java. (Gamma, Helm, Johnson, & Vlissides, 1995) is a fascinating handbook of useful organizational principles for writing object-oriented programs. The principles of abstract interpretation, along with other methods of 
program analysis, are presented in (Nielson, Nielson, & Hankin, 1999). (Abadi & Cardelli, 1996) defines a very simple object calculus, which is a useful foundation for the study of types in object-oriented systems.



 

This page intentionally left blank.



 

7 Continuation-Passing Interpreters

In chapter 3, we used the concept of environments to explore the behavior of bindings, which 
establish the data context in which each portion of a program is executed. Here we will do the 
same for the control context in which each portion of a program is executed. We will introduce the 
concept of a continuation as an abstraction of the control context, and we will write interpreters 
that take a continuation as an argument, thus making the control context explicit.

Consider the following definition of the factorial function in Scheme.

(define fact  (lambda (n)    (if (zero? n) 1 (* n (fact (- n 1))))))

We can use a derivation to model a calculation with fact:

  (fact 4)= (* 4 (fact 3))= (* 4 (* 3 (fact 2)))
= (* 4 (* 3 (* 2 (fact 1))))= (* 4 (* 3 (* 2 (* 1 (fact 0)))))
= (* 4 (* 3 (* 2 (* 1 1))))= (* 4 (* 3 (* 2 1)))= (* 4 (* 3 2))= (* 4 6)
= 24

This is the natural recursive definition of factorial. Each call of fact is made with a promise that 
the value returned will be multiplied by the value of n at the time of the call. Thus fact is 
invoked in larger and larger control contexts as the calculation proceeds.



 

Compare this behavior to that of the following procedures.

(define fact-iter  (lambda (n)    (fact-iter-acc n 1)))(define fact-iter-
acc  (lambda (n a)    (if (zero? n) a (fact-iter-acc (- n 1) (* n a)))))

With these definitions, we calculate:

  (fact-iter 4)= (fact-iter-acc 4 1)= (fact-iter-acc 3 4)= (fact-iter-
acc 2 12)= (fact-iter-acc 1 24)= (fact-iter-acc 0 24)= 24

Here, fact-iter-acc is always invoked in the same context: in this case, no context at all. 
When fact-iter-acc calls itself, it does so at the "tail end" of a call to fact-iter-acc. 
We call this a tail call. No promise is made to do anything with the returned value other than to 
return it as the result of the call to fact-iter-acc. Thus each step in the derivation above has 
the form (fact-iter-acc n a).

When a procedure such as fact executes, additional control information must be recorded with 
each recursive call, and this information must be retained until the call returns. This reflects 
growth of the control context in the first derivation above. Such a process is said to exhibit 
recursive control behavior.

By contrast, no additional control information need be recorded when fact-iter-acc calls 
itself. This is reflected in the derivation by recursive calls occurring at the same level within the 
expression (on the outside in the derivation above). In such cases the system does not need an ever-
increasing amount of memory for control contexts as the depth of recursion (the number of 
recursive calls without corresponding returns) increases. A process that uses a bounded amount of 
memory for control information is said to exhibit iterative control behavior.

Why do these programs exhibit different control behavior? In the recursive definition of factorial, 
the procedure fact is called in an operand position. We need to save context around this call 
because we need to remember that



 

after the evaluation of the procedure call, we still need to finish evaluating the operands and 
executing the outer call, in this case to the waiting multiplication. This leads us to an important 
principle:

It is evaluation of actual parameters, not the calling of procedures, that requires creating a 
control context.

In this chapter we will learn how to track and manipulate control contexts. Our central tool will be 
the data type of continuations. Continuations are an abstraction of the notion of control context, 
much as environments are an abstraction of data contexts. We will explore continuations by 
writing an interpreter that explicitly passes a continuation parameter, just as our previous 
interpreters explicitly passed an environment parameter. Once we do this for the simple cases, we 
can see how to add to our language facilities that manipulate control contexts in more complicated 
ways, such as exceptions and threads. We conclude by showing how these ideas can be applied to 
a very different programming paradigm, called logic programming.

In chapter 8 we shall see that the technique of converting to continuation-passing style is very 
general and can be applied to many programs. The experience with continuations gained in this 
chapter will greatly assist in understanding the general technique to come. Also, the additional 
experience provided by the next chapter is necessary to obtain a general working knowledge of 
continuations. It is a deep and subtle concept that can be mastered only by working with it from 
several angles.

7.1 A Continuation-Passing Interpreter

In our new interpreter, the major procedures such as eval-expression will take a third 
parameter. This new parameter, the continuation, is intended to be an abstraction of the control 
context in which each expression is evaluated. We begin with an interpreter in figure 7.1 of the 
language of section 3.7.

Our goal is to rewrite the interpreter so that no call to eval-expression builds control 
context: all of the control context will be contained in the continuation parameter.

Now, we know that an environment is a representation of a function from symbols to locations. 
What does a continuation represent? The continuation of an expression represents a procedure that 
takes the result of the expression and completes the computation. So our interface must include a 
procedure, apply-cont, that takes a continuation cont and an expressed value val and 
finishes the computation as specified by cont.



 

(define eval-program  (lambda (pgm)    (cases program pgm      (a-
program (body)        (eval-expression body (init-env))))))(define eval-
expression  (lambda (exp env)    (cases expression exp      (lit-
exp (datum) datum)      (var-exp (id) (apply-env env id))      (proc-
exp (ids body) (closure ids body env))      (letrec-exp (proc-
names idss bodies letrec-body)        (eval-expression letrec-
body          (extend-env-recursively            proc-
names idss bodies env)))      (if-exp (test-exp true-exp false-
exp)        (if (true-value? (eval-expression test-
exp env))          (eval-expression true-exp env)          (eval-
expression false-exp env)))      (primapp-
exp (prim rands)        (let ((args (eval-
rands rands env)))          (apply-primitive prim args)))      (app-
exp (rator rands)        (let ((proc (eval-
expression rator env))              (args (eval-
rands rands env)))          (if (procval? proc)            (apply-
procval proc args)            (eopl:error 'eval-
expression              "Attempt to apply non-
procedure ~s" proc))))      (let-
exp (ids rands body)        (let ((args (eval-
rands rands env)))          (eval-expression body (extend-
env ids args env))))      (varassign-exp (id rhs-
exp)        (begin          (setref!            (apply-env-
ref env id)            (eval-expression rhs-exp env))          1))      )))

Figure 7.1 Environment-passing Interpreter



 

What kind of continuation-builders will be included in the interface? We will discover these 
continuation-builders as we analyze the interpreter. To begin, we will need a continuation-builder 
for the context that says there is nothing more to do with the value of the computation. We call 
this continuation (halt-cont), and we will specify it by

  (apply-cont (halt-cont) val)  = (begin (write val) (newline))

assuming that we want to end the computation by writing the value of the entire expression passed 
to the interpreter and then end the output line.

We rewrite eval-program as:

(define eval-program  (lambda (pgm)    (cases program pgm      (a-
program (exp)        (eval-expression exp (init-env) (halt-cont))))))

We can now begin to rewrite eval-expression. The first few lines of eval-expression 
simply calculate a value and return it, without calling eval-expression again. In the 
continuation-passing interpreter, these same lines send the same value to the continuation by 
calling apply-cont:

(define eval-
expression  (lambda (exp env cont)    (cases expression exp      (lit-
exp (datum)        (apply-cont cont datum))      (var-
exp (id)        (apply-cont cont (apply-env env id)))      (proc-
exp (ids body)        (apply-cont cont (closure ids body env)))      ...)))

Right now the only possible value of cont is the halt continuation, but that will change 
momentarily. It is easy to check that if the program consists of an expression of one of these 
forms, the value of the expression will be applied to halt-cont, which will cause the value to 
be printed.

The behavior of letrec is almost as simple: it creates a new environment without calling eval-
expression, and then evaluates the body in the new environment. The value of the body 
becomes the value of the entire expression. That means that the body is performed in the same 
control context as the entire expression. The resulting code is unchanged from the original, except 
for the addition of cont.



 

     (letrec-exp (proc-names idss bodies letrec-body)       (eval-
expression letrec-body         (extend-env-recursively proc-
names idss bodies env)         cont)).

We cannot say

     (letrec-exp (proc-names idss bodies letrec-body)       (apply-
cont cont         (eval-expression letrec-body           (extend-env-
recursively proc-names idss bodies env)           (halt-cont))))

because using the continuation (halt-cont) causes the value to be printed. This would also 
defeat our purpose of making the control context explicit, because the call to eval-
expression is in an operand position.

Let us next consider an if expression. In an if expression, the first thing evaluated is the test, but 
the result of the test is not the value of the entire expression. We need to build a new context that 
will see if the result of the test expression is a true value, and evaluate either the true expression or 
the false expression. So in eval-expression we write

      (if-exp (test-exp true-exp false-exp)        (eval-expression test-
exp env          (test-cont true-exp false-exp env cont)))

where test-cont is a new continuation-builder subject to the specification

  (apply-cont (test-cont true-exp false-exp env cont) val)  = (if (true-
value? val)      (eval-expression true-exp env cont)      (eval-
expression false-exp env cont))

We now have two continuation-builders, so we can implement them either using a procedural 
representation or a data structure representation. The procedural representation is in figure 7.2 and 
the data structure representation, using define-datatype, is in figure 7.3.

Here is a sample calculation to show how these pieces fit together. As we did in section 3.5, we 
write «exp» to denote the abstract syntax tree associated with the expression exp. Assume e0 is an 
environment in which b is bound to true and assume k0 is the initial continuation, which is the 
value of (halt-cont). The commentary is informal and should be checked against the 
definition of eval-expression and the specification of apply-cont. This example is 
contrived because we have letrec to introduce procedures but we do not yet have a way to 
invoke them.



 

(define halt-
cont  (lambda ()    (lambda (val)      (begin (write val) (newline)))))
(define test-cont  (lambda (true-exp false-
exp env cont)    (lambda (val)      (if (true-value? val)        (eval-
expression true-exp env cont)        (eval-expression false-
exp env cont)))))(define apply-cont  (lambda (cont v)    (cont v)))

Figure 7.2 Procedural representation of continuations

(define-datatype continuation continuation?  (halt-cont)  (test-
cont    (true-exp expression?)    (false-
exp expression?)    (env environment?)    (cont continuation?))
(define apply-
cont  (lambda (cont val)    (cases continuation cont      (halt-
cont ()        (begin (write val) (newline)))      (test-cont (true-
exp false-exp env cont)        (if (true-value? val)          (eval-
expression true-exp env cont)          (eval-expression false-
exp env cont))))))

Figure 7.3 Data structure representation of continuations



 

(eval-
expression <<letrec p (x) = x in if b then 3 else 4>> e0  k0)= 
where e1 is (extend-env-recursively ... e0)(eval-expression <<if b 
then 3 else 4>> e1 k0)= evaluate the test expression(eval-expression <<b>> 
e1 (test-cont <<3>> <<4>> e1 k0))= send the value of b to the continuation
(apply-cont (test-cont <<3>> <<4>> e1 k0) true)= evaluate the true 
expression(eval-expression <<3>> e1 k0)= send the value of the literal expression to 
the continuation(apply-cont k0 3)= invoke the final continuation with the final answer
(begin (write 3) (newline))

Next we consider primitive applications. We will need to supply a continuation argument to 
eval-rands. This continuation will accept the arguments to the primitive and call apply-
primitive to perform the primitive operation. So in eval-expression we write

       (primapp-exp (prim rands)         (eval-rands rands env (prim-args-
cont prim cont)))

where prim-args-cont is the new continuation-builder, subject to

  (apply-cont (prim-args-
cont prim cont) val)  = (let ((args val))      (apply-cont cont (apply-
primitive prim args)))

In the right-hand side, we bind args to the value of val to connect this specification to code of 
figure 7.1, which says (apply-primitive prim args).

Before finishing eval-expression, we turn our attention to the procedure eval-rands, so 
we will have a self-contained language we can test. It will be easier to analyze eval-rands if 
we expand the use of map and give a name to each intermediate value as in figure 7.4(top). The 
continuation-passing version of eval-rands is in figure 7.4(bottom).

If rands is empty, we return the empty list to the context. If rands is non-empty, we evaluate 
the first expression in a control context that will finish the computation. What should the 
specification for eval-first-cont be? We want it to evaluate the rest of the expressions, 
create the list of all the values, and return it by sending it to the continuation cont. Therefore we 
expect it to be something like:



 

(define eval-
rands  (lambda (rands env)    (if (null? rands)      '()      (let ((first (eval-
expression (car rands) env))            (rest (eval-
rands (cdr rands) env)))        (cons first rest)))))(define eval-
rands  (lambda (rands env cont)    (if (null? rands)      (apply-
cont cont '())      (eval-expression (car rands) env        (eval-first-
cont rands env cont)))))

Figure 7.4 Direct and continuation-passing versions of eval-rand

   (apply-cont (eval-first-
cont rands env cont) val)   = (let ((first val)           (rest (eval-
rands (cdr rands) env)))       (apply-cont cont (cons first rest)))

But this is not right. Recall that in Scheme (let ((x e0)) e1) is the same as ((lambda (x) 
e1) e0), so the let's right-hand sides count as operand positions. Therefore the call to eval-rands 
is in an operand position, and that would require a control context. So we need to analyze this bit of code 
in the same way we analyzed the bodies of eval-expression and eval-rands. In this expression, 
we need to evaluate the call to eval-rands in a new context that will finish the computation. So we 
have

   (apply-cont (eval-first-cont rands env cont) val)   = (eval-
rands (cdr rands) env (eval-rest-cont val cont))   (apply-cont (eval-rest-
cont first-val cont) val)   = (let ((first first-
val)           (rest val))       (apply-cont cont (cons first rest)))

The following calculation shows how continuations are used in operand evaluation. As before, it is 
helpful to check the commentary against the definitions of eval-expression, and now eval-
rands, and against the specifi-



 

cation of apply-cont. Assume e0 is an environment in which x is bound to 3, y is bound to 4, 
and z is bound to 5. We also assume, for the sake of this example, that the addition primitive can 
take more than two arguments.

(eval-expression <<+(x,y,z)>> e0 k0)= begin evaluating actuals in new 
continuation(eval-rands <<(x,y,z)>> e0  (prim-args-cont <<+>> k0))= 
evaluate first actual in a new continuation(eval-expression <<x>> e0  (eval-
first-cont <<(x,y,z)>> e0    (prim-args-cont <<+>> k0)))= x is bound 
to 3, so apply the continuation to 3(apply-cont  (eval-first-cont <<(x,y,z)
>> e0    (prim-args-cont <<+>> k0))  3)= continue evaluating actuals(eval-
rands <<(y,z)>> e0  (eval-rest-cont 3    (prim-args-cont <<
+>> k0)))= evaluate second actual(eval-expression <<y>> e0  (eval-first-
cont <<y,z>> e0    (eval-rest-cont 3      (prim-args-cont <<
+>> k0))))= y is bound to 4, so send it to the continuation(apply-cont  (eval-
first-cont <<(y,z)>> e0    (eval-rest-cont 3      (prim-args-
cont <<+>> k0)))  4)= continue evaluating actuals(eval-rands <<(z)
>> e0  (eval-rest-cont 4    (eval-rest-cont 3      (prim-args-
cont <<+>> k0))))= evaluate third actual(eval-expression <<z>> e0  (eval-
first-cont <<(z)>> e0    (eval-rest-cont 4      (eval-rest-
cont 3        (prim-args-cont <<+>> k0)))))



 

= z is bound to 5, so send it to the continuation(apply-cont  (eval-first-cont <<
(z)>> e0    (eval-rest-cont 4      (eval-rest-cont 3        (prim-
args-cont <<+>> k0))))  5)= continue evaluating actuals(eval-rands <<()
>> e0  (eval-rest-cont 5    (eval-rest-cont 4      (eval-rest-
cont 3        (prim-args-cont <<+>> k0)))))= no more actuals, so apply 
continuation to empty list(apply-cont  (eval-rest-cont 5    (eval-rest-
cont 4      (eval-rest-cont 3        (prim-args-cont <<
+>> k0))))  '())= cons value onto list(apply-cont  (eval-rest-
cont 4    (eval-rest-cont 3      (prim-args-cont <<
+>> k0)))  '(5))= cons value onto list(apply-cont  (eval-rest-
cont 3    (prim-args-cont <<+>> k0))  '(4 5))= cons value onto list(apply-
cont  (prim-args-cont <<+>> k0)  '(3 4 5))= invoke the primitive(apply-
cont  k0  (apply-primitive <<+>> '(3 4 5)))= send the result to the original 
continuation k0(apply-cont k0 12)

We now have a working interpreter, which we display in figure 7.5. Figure 7.6 shows the 
implementation of continuations using define-datatype.



 

(define eval-program  (lambda (pgm)    (cases program pgm      (a-
program (body)        (eval-expression body (init-env) (halt-cont))))))
(define eval-
expression  (lambda (exp env cont)    (cases expression exp      (lit-
exp (datum) (apply-cont cont datum))      (var-exp (id) (apply-
cont cont (apply-env env id)))      (proc-exp (ids body)        (apply-
cont cont (closure ids body env)))      (letrec-exp (proc-
names idss bodies letrec-body)        (eval-expression letrec-
body          (extend-env-recursively proc-
names idss bodies env)          cont))      (if-exp (test-exp true-
exp false-exp)        (eval-expression test-exp env          (test-
cont true-exp false-exp env cont)))      (primapp-
exp (prim rands)        (eval-rands rands env (prim-args-
cont prim cont)))      )))(define eval-
rands  (lambda (rands env cont)    (if (null? rands)      (apply-
cont cont '())      (eval-expression (car rands) env        (eval-first-
cont rands env cont)))))

Figure 7.5 First continuation-passing interpreter

Exercise 7.1 [ ] Implement this data type of continuations using procedural representation.

Exercise 7.2 [ ] In the example above, each eval-first-cont continuation keeps one more 
expression than it needs to. Modify the constructor eval-first-cont so that it keeps only the 
expressions remaining to be evaluated.

Exercise 7.3 [ ] Rewrite apply-cont in figure 7.6 to eliminate the use of Scheme let-expressions.



 

(define-datatype continuation continuation?  (halt-cont)  (test-
cont    (true-exp expression?)    (false-
exp expression?)    (env environment?)    (cont continuation?))  (prim-
args-cont    (prim primitive?)    (cont continuation?))  (eval-first-
cont    (exps (list-
of expression?))    (env environment?)    (cont continuation?))  (eval-
rest-cont    (first-value expval?)    (cont continuation?))  )
(define apply-
cont  (lambda (cont val)    (cases continuation cont      (halt-
cont ()        (begin (write val) (newline)))      (test-cont (true-
exp false-exp env cont)        (if (true-value? val)          (eval-
expression true-exp env cont)          (eval-expression false-
exp env cont)))      (prim-args-
cont (prim cont)        (let ((args val))          (apply-cont cont (apply-
primitive prim args))))      (eval-first-cont (exps env cont)        (eval-
rands (cdr exps) env          (eval-rest-cont val cont)))      (eval-rest-
cont (first cont)        (let ((rest val))          (apply-
cont cont (cons first rest))))      )))

Figure 7.6 Continuations for figure 7.5



 

Exercise 7.4 [ ] Add variable assignment to this interpreter by including a new continuation-builder 
(varassign-cont env id cont).

Exercise 7.5 [ ] Modify the solution to the previous exercise so that the environment is not kept in the 
continuation.

Exercise 7.6 [ ] Our translation of eval-rands evaluated the expressions in left-to-right order. Write 
a new translation of eval-rands that evaluates the expressions in right-to-left order. Write out a 
derivation of eval-expression using the expression «+ (x,y,z) », the environment e0, and 
the continuation k0 like the one above for this translation.

Exercise 7.7 [ ] When we said that apply-cont took a continuation and an expressed value as 
arguments, we were not quite accurate: a continuation built by prim-args-cont, for example, expects 
to be passed not an expressed value but a list of expressed values. Which continuation-builders build 
continuations that expect to be passed a list of expressed values? Make this distinction explicit in the 
interpreter by splitting the data type continuation into two data types: expval-
continuation and expval-list-continuation, with application procedures apply-
expval-cont and apply-expval-list-cont, so that the arguments of apply-
expval-cont are an expval-continuation and an expressed value, while the arguments of 
apply-expval-list-cont are an expval-list-continuation and a list of 
expressed values.

We've now done most of the language of figure 7.1. Let us next consider let expressions. The 
original code for let was

      (let-exp (ids rands body)        (let ((args (eval-
rands rands env)))          (eval-expression body (extend-
env ids args env))))

In the continuation-passing interpreter, we need to call eval-rands in a context that will finish 
the computation. So in the continuation-passing version of eval-expression we write

      (let-exp (ids rands body)        (eval-rands rands env          (let-
exp-cont ids env body cont)))

and we add to our continuations interface the specification

  (apply-cont (let-exp-cont ids env body cont) val)  = (let ((new-
env (extend-env ids val env)))      (eval-expression body new-env cont))

The last thing in our language is procedure application. In the environment-passing interpreter, we 
wrote



 

      (app-exp (rator rands)        (let ((proc (eval-
expression rator env))              (args (eval-
rands rands env)))          (if (procval? proc)            (apply-
procval proc args)            (eopl:error 'eval-
expression              "Attempt to apply non-procedure ~s" proc))))

Here we have two calls to consider, as we did in eval-rands. So we must choose one of them to be 
first, and then we must transform the remainder to handle the second. Furthermore, we will have to pass 
the continuation to apply-procval, because apply-procval contains a call to eval-
expression.

We choose the evaluation of the operator to be first, so in eval-expression we write

      (app-exp (rator rands)        (eval-expression rator env          (eval-
rator-cont rands env cont)))

with the untransformed continuation specified by

  (apply-cont (eval-rator-
cont rands env cont) val)  = (let ((proc val)          (args (eval-
rands rands env)))      (if (procval? proc)        (apply-
procval proc args cont)        (eopl:error 'eval-
expression          "attempt to apply non-procedure ~s"          proc)))

As with eval-rands, we will need another continuation-builder to represent the context around the 
call to apply-procval. This yields the specification

  (apply-cont (eval-rator-
cont rands env cont) val)  = (let ((proc val))      (eval-rands rands env (eval-
rands-cont proc cont)))  (apply-cont (eval-rands-
cont proc cont) val)  = (let ((args val))      (if (procval? proc)        (apply-
procval proc args cont)        (eopl:error 'eval-
expression          "Attempt to apply non-procedure ~s"          proc)))



 

Last, we must modify apply-procval to fit in this continuation-passing style:

(define apply-
procval  (lambda (proc args cont)    (cases procval proc      (closure (ids body env)        (eval-
expression body          (extend-env ids args env)          cont)))))

This completes the presentation of the continuation-passing interpreter. The complete interpreter is shown in figures 7.7–7.8. 
The complete specification of the continuations is shown in figure 7.9.

Now we can check the assertion that it is evaluation of actual parameters, not the calling of procedures, that requires creating a 
control context. What expressions require the building of new continuations? Continuations are built for:

• Evaluation of the test in a conditional (the test-cont continuation).

• Evaluation of the operands to a primitive (the prim-args-cont continuation).

• Evaluation of the operator and operands of a procedure call (the eval-rator-cont and eval-rands-cont 
continuations).

• Evaluation of the right-hand-sides of a let expression (the let-exp-cont continuation).

Each of these is like the evaluation of an operand. The other continuation-builders, eval-first-cont and eval-rest-
cont, are triggered only from these continuations.

But procedure calls do not themselves grow control contexts. Consider the evaluation of (f x y z), where f is bound to 
some closure clo0.

(eval-expression <<(f x y z)>> e0 k0)= evaluate operator(eval-expression <<f>> e0  (eval-
rator-cont <<(x,y,z)>> e0 k0))= send the closure to the continuation(apply-cont  (eval-rator-
cont <<(x,y,z)>> e0 k0)  clo0)



 

= evaluate the operands(eval-rands <<(x,y,z)>> e0  (eval-rands-
cont clo0 k0))= evaluate expressions as on page 250(apply-cont  (eval-rands-
cont clo0 k0)  '(3 4 5))= receive the arguments and apply the closure(apply-
procval clo0 '(3 4 5) k0)

So the closure is applied, and its body is evaluated, in the same continuation in which it was 
called. It is the evaluation of operands, not the entry into a procedure body, that requires control 
context.

Exercise 7.8 [ ] Add the begin expression of exercise 3.39 to the continuation-passing interpreter. Be sure 
that no call to eval-expression or eval-rands occurs in a position that would build control 
context.

Exercise 7.9 [ ] Instrument the interpreter of figures 7.7–7.9 to produce output similar to that of the 
calculation on page 250. Watch out for the circular links in environments built by letrec.

Exercise 7.10 [ ] Translate the definitions of fact and fact-iter into the defined language. Then, 
using the instrumented interpreter of the previous exercise, compute (fact 4) and (fact-iter 
4). Compare them to the calculations at the beginning of this chapter. Find (* 4 (* 3 (* 2 
(fact 1)))) in the trace of (fact 4). What is the continuation of apply-procval for this 
call of (fact 1)?

Exercise 7.11 [ ] The instrumentation of the preceding exercise produces voluminous output. Modify the 
instrumentation to track instead only the size of the largest continuation used during the calculation. We 
measure the size of a continuation by the number of continuation-builders employed in its construction, so the 
size of the largest continuation in the calculation on page 250 is 4. Then calculate the values of fact and 
fact-iter applied to several operands. Confirm that the size of the largest continuation used by fact 
grows linearly with its argument, but the size of the largest continuation used by fact-iter is a constant.

Exercise 7.12 [ ] Our continuation data type contains just the single constant, halt-cont, and all the 
other continuation-builders have a single continuation argument. Implement continuations by representing 
them as lists, where (halt-cont) is represented by the empty list, and each other continuation is 
represented by a non-empty list whose car contains a distinctive data structure (called frame or activation 
record) and whose cdr contains the embedded continuation. Observe that the interpreter treats these lists like a 
stack (of frames).

Exercise 7.13 [ ] Extend the continuation-passing interpreter to the language of figure 3.24. Pass a 
continuation argument to execute-statement, and make sure that no call to execute-
statement occurs in a position that grows a control context.



 

(define eval-program  (lambda (pgm)    (cases program pgm      (a-
program (body)        (eval-expression body (init-env) (halt-cont))))))
(define eval-
expression  (lambda (exp env cont)    (cases expression exp      (lit-
exp (datum) (apply-cont cont datum))      (var-exp (id) (apply-
cont cont (apply-env env id)))      (proc-exp (ids body)        (apply-
cont cont (closure ids body env)))      (letrec-exp (proc-
names idss bodies letrec-body)        (eval-expression letrec-
body          (extend-env-recursively proc-
names idss bodies env)          cont))      (if-exp (test-exp true-
exp false-exp)        (eval-expression test-exp env          (test-
cont true-exp false-exp env cont)))      (primapp-
exp (prim rands)        (eval-rands rands env (prim-args-
cont prim cont)))      (let-exp (ids rands body)        (eval-
rands rands env          (let-exp-cont ids env body cont)))      (app-
exp (rator rands)        (eval-expression rator env          (eval-rator-
cont rands env cont)))      )))

Figure 7.7 Continuation-passing interpreter (part 1)

Since a statement does not return a value, distinguish between ordinary continuations and continuations for 
statements; the latter are usually called command continuations. The interface should include a procedure 
apply-command-cont that takes a command continuation and invokes it. Implement command 
continuations both as data structures and as 0-argument procedures.

One might now be tempted to transcribe the interpreter into an ordinary procedural language, 
using a data structure representation of continuations to avoid the need for higher-order 
procedures. Most procedural languages,



 

(define eval-rands  (lambda (rands env cont)    (if (null? rands)      (apply-
cont cont '())      (eval-expression (car rands) env        (eval-first-cont rands env cont)))))
(define apply-
procval  (lambda (proc args cont)    (cases procval proc      (closure (ids body env)        (eval-
expression body          (extend-env ids args env)          cont)))))

Figure 7.8 Continuation-passing interpreter (part 2)

however, make it difficult to do this translation: instead of growing control context only when necessary, they add to the 
control context (the stack!) on every procedure call. Since the procedure calls in our system never return until the very end of 
the computation, the stack in these systems continues to grow until that time.

This behavior is not entirely irrational: in such languages almost every procedure call occurs on the right-hand side of an 
assignment statement, so that almost every procedure call must grow the control context already. Hence the architecture is 
optimized for this most common case. Furthermore, most languages store environment information on the stack, so every 
procedure call must generate a control context that remembers to remove the environment information from the stack.

In such languages, one solution is to use a technique called trampolining. To avoid having an unbounded chain of procedure 
calls, we break the chain by having one of the procedures in the interpreter actually return a 0-argument procedure. This 
procedure, when called, will continue the computation. The entire computation is driven by a procedure called a trampoline 
that bounces from one procedure to the next. (See figure 7.10.)

Each 0-argument procedure returned by apply-cont represents a thread of the computation; we shall see in section 7.5 how 
this idea can be used to simulate multithreaded programs.



 

  (apply-cont (test-cont true-exp false-exp env cont) val)  = (if (true-
value? val)      (eval-expression true-exp env cont)      (eval-expression false-
exp env cont))  (apply-cont (prim-args-
cont prim cont) val)  = (let ((args val))      (apply-cont cont (apply-
primitive prim args cont)))  (apply-cont (let-exp-
cont ids env body cont) val)  = (let ((new-env (extend-
env ids val env)))      (eval-expression body new-env cont))  (apply-cont (eval-
rator-cont rands env cont) val)  = (let ((proc val))      (eval-
rands rands env (eval-rands-cont proc cont)))  (apply-cont (eval-rands-
cont proc cont) val)  = (let ((args val))      (if (procval? proc)        (apply-
procval proc args cont)        (eopl:error 'eval-
expression          "Attempt to apply non-
procedure ~s"          proc))))  (apply-cont (eval-first-
cont rands env cont) val)  = (eval-rands (cdr rands) env      (eval-rest-
cont val cont))  (apply-cont (eval-rest-cont first-val cont) val)  = (apply-
cont cont (cons first-val val))

Figure 7.9 Specification of continuations for figure 7.7

Exercise 7.14 [ ] Finish implementing the trampolining interpreter. How does this computation terminate? 
Devise a way for the interpreter to finish cleanly.

Exercise 7.15 [ ] The (lambda () (cases ...)) in apply-cont and the (proc) in 
trampoline constitute a procedural representation of threads. Replace this by a data structure representation.



 

(define trampoline  (lambda (proc)    (trampoline (proc))))(define apply-
cont  (lambda (cont val)|   (lambda ()      (cases continuation cont      ...))))

Figure 7.10 Procedural representation of trampolining

Exercise 7.16 [ ] Implement a trampolining interpreter in an ordinary procedural language. Use a data structure 
representation of threads, as in the preceding exercise, and replace the recursive call to trampoline in its own 
body by an ordinary while or other looping construct.

Exercise 7.17 [ ] One could also attempt to transcribe the environment-passing interpreters of chapter 3 in an 
ordinary procedural language. Such a transcription would fail in all but the simplest cases, for the same reasons as 
suggested above. Can the technique of trampolining be used in this situation as well?

7.2 Procedural Representation of Continuations.

It can be difficult to follow the workings of the continuation-passing interpreter because the specification 
of the continuations is separate from the clauses of the interpreter to which they are associated. This 
difficulty can be alleviated by using a procedural representation of continuations, and expanding the 
continuation-builders and apply-cont where they occur.

A procedural implementation of the continuation interface is shown in figures 7.11–7.12. Here we have 
implemented the interface in a most straightforward way, so that every continuation uses val as its 
bound variable.

Now we can substitute these definitions into the interpreter of figures 7.7–7.8. When we do this, we will 
also replace expressions like (lambda (val) (let ((args val)) ...)) by (lambda 
(args) ...). The result is shown in figures 7.13–7.14. This interpreter is more readable than the 
preceding ones: we can read the final lines of eval-program as: "Apply eval-expression to 
exp with the initial environment, call the result val,



 

(define apply-cont  (lambda (cont v)    (cont v)))(define halt-
cont  (lambda ()    (lambda (val)      (begin (write val) (newline)))))
(define test-cont  (lambda (true-exp false-
exp env cont)    (lambda (val)      (if (true-value? val)        (eval-
expression true-exp env cont)        (eval-expression false-exp env cont)))))
(define varassign-
cont  (lambda (env id cont)    (lambda (val)      (begin        (setref! (apply-
env-ref env id) val)        (apply-cont cont 1)))))(define prim-args-
cont  (lambda (prim cont)    (lambda (val)      (let ((args val))        (apply-
cont cont (apply-primitive prim args))))))(define let-exp-
cont  (lambda (ids env body cont)    (lambda (val)      (let ((new-env (extend-
env ids val env)))        (eval-expression body new-env cont)))))

Figure 7.11 Procedural implementation of continuations (part 1)



 

(define eval-rator-cont  (lambda (rands env cont)    (lambda (val)      (let ((proc val))        (eval-
rands rands env          (eval-rands-cont proc cont))))))(define eval-rands-
cont  (lambda (proc cont)    (lambda (val)      (let ((args val))        (if (procval? proc)          (apply-
procval proc args cont)          (eopl:error 'eval-expression            "Attempt to apply non-
procedure ~s" proc))))))(define eval-first-cont  (lambda (rands env cont)    (lambda (val)      (eval-
rands (cdr rands) env        (eval-rest-cont val cont)))))(define eval-rest-cont  (lambda (first-
val cont)    (lambda (val)      (let ((rest val))        (apply-cont cont (cons first-val rest))))))

Figure 7.12 Procedural implementation of continuations (part 2)

and then print it." Similarly, the code for eval-rands,

(define eval-rands  (lambda (rands env cont)    (if (null? rands)      (cont '())      (eval-
expression (car rands) env        (lambda (first-val)          (eval-
rands (cdr rands) env            (lambda (rest)              (cont (cons first-val rest)))))))))



 

can be read as: "if rands is empty, return the empty list. Otherwise, evaluate the first expression 
and call the result first-val. Then evaluate the second expression and call the result rest. 
Then return the cons of first-val and rest."

Using a procedural representation makes the program easier to read, and also allows the 
programmer more freedom to include additional continuation-builders. We shall see in chapter 8 
how this idea can be used to convert any program to continuation-passing style. A disadvantage of 
the procedural representation is that it is harder to debug, since procedures are usually unprintable.

Exercise 7.18 [ ] Transform the state-passing interpreter of exercise 3.48 into continuation-passing style. 
The continuations should take two arguments: the expressed value and the state, so one might write:

(define eval-
expression  (lambda (exp env store cont)    (cases expression exp      (var-
exp (id)        (cont (apply-store store (apply-
env env id)) store))      (varassign-exp (id rhs-exp)        (eval-
expression rhs-exp env store          (lambda (val new-
store)            (cont 1              (extend-store (apply-
env env id) val store)))))      (if-exp (test-exp true-exp false-
exp)        (eval-expression test-exp env store          (lambda (val new-
store)            (if (true-value? val)              (eval-expression true-
exp  new-store cont)              (eval-expression false-exp new-
store cont)))))     ...)))

7.3 An Imperative Interpreter

In section 3.7, we saw how assignment to shared variables could sometimes be used in place of 
binding. Consider the familiar example of even and odd at the top of figure 7.15. It could be 
replaced by the program below it in figure 7.15. There the shared variable x allows 
communication between the two procedures. In the top example, the procedure bodies look for the 
relevant data in the environment; in the other program, they look for it in the store.



 

(define eval-program  (lambda (pgm)    (cases program pgm      (a-
program (exp)        (eval-expression exp (init-
env)          (lambda (val)            (begin (write val) (newline))))))))(define eval-
expression  (lambda (exp env cont)    (cases expression exp      (lit-
exp (datum) (cont datum))      (var-exp (id) (cont (apply-env env id)))      (proc-
exp (ids body)        (cont (closure ids body env)))      (letrec-exp (proc-
names idss bodies letrec-body)        (eval-expression letrec-body          (extend-env-
recursively proc-names idss bodies env)          cont))      (if-exp (test-exp true-
exp false-exp)        (eval-expression test-
exp env          (lambda (val)            (if (true-value? val)              (eval-
expression true-exp env cont)              (eval-expression false-
exp env cont)))))      (varassign-exp (id exp)        (eval-
expression exp env          (lambda (val)            (begin              (setref! (apply-
env-ref env id) val)              (cont 1)))))

Figure 7.13 Continuation-passing interpreter with higher-order continuations inlined (part 1)

Consider a trace of the computation at the bottom of figure 7.15. This could be a trace of either computation. It 
could be a trace of the first computation, in which we keep track of the procedure being called and its argument, or 
it could be a trace of the second, in which we keep track of the procedure being called and the contents of the 
register x.



 

      (primapp-exp (prim rands)        (eval-
rands rands env          (lambda (args)            (cont (apply-primitive prim args)))))      (let-
exp (ids rands body)        (eval-rands rands env          (lambda (vals)            (let ((new-
env (extend-env ids vals env)))              (eval-expression body new-env cont)))))      (app-
exp (rator rands)        (eval-expression rator env          (lambda (proc)            (eval-
rands rands env              (lambda (args)                (if (procval? proc)                  (apply-
procval proc args cont)                  (eopl:error 'eval-
expression                    "Attempt to apply non-
procedure ~s"                    proc)))))))      )))(define eval-
rands  (lambda (rands env cont)    (if (null? rands)      (cont '())      (eval-
expression (car rands) env        (lambda (first-val)          (eval-
rands (cdr rands) env            (lambda (rest)              (cont (cons first-val rest)))))))))
(define apply-
procval  (lambda (proc args cont)    (cases procval proc      (closure (ids body env)        (eval-
expression body          (extend-env ids args env)          cont)))))

Figure 7.14 Continuation-passing interpreter with higher-order continuations inlined (part 2)



 

letrec  even(x) = if zero?(x)            then 1            else (odd sub1(x))  odd
(x)  = if zero?(x)            then 0            else (even sub1(x))in (odd 13)
let x = 0in letrec     even() = if zero?
(x)              then 1              else let d = set x = sub1
(x)                   in (odd)     odd()  = if zero?
(x)              then 0              else let d = set x = sub1
(x)                   in (even)   in let d = set x = 13 in (odd)       x = 13;       goto odd;
even:  if (x=0) then return(1)                else {x = x-1;                      goto odd;}
odd:   if (x=0) then return(0)                else {x = x-
1;                      goto even;}  (odd  13)= (even 12)= (odd  11)...= (odd   1)= (even  0)
= 1

Figure 7.15 Three programs with a common trace



 

Yet a third interpretation of this trace would be as the trace of gotos (called a flowchart program), 
in which we keep track of the location of the program counter and the contents of the register x.

But this works only because in the original code the calls to even and odd do not grow any 
control context: they are tail calls. We could not carry out this transformation for fact, because 
the trace of fact grows unboundedly: the "program counter" appears not at the outside of the 
trace, as it does here, but inside a control context.

We can carry out this transformation for any procedure that does not require control context. This 
leads us to an important principle:

A procedure call that does not grow control context is the same as a jump.

Such a procedure call is said to be a tail call.

If a group of procedures call each other only by tail calls, then we can translate the calls to use 
assignment instead of binding, and we can translate such an assignment program into a flowchart 
program.

In this section, we shall use this principle to translate the continuation-passing interpreter into a 
form suitable for transcription into a language without higher-order procedures.

We begin with the interpreter of figures 7.7–7.8, using a data structure representation of 
continuations. The data structure representation is shown in figures 7.16 and 7.17.

Our first task is to list the procedures that will communicate via shared registers. These 
procedures, with their formal parameters, are:

(eval-expression exp env cont)(eval-rands rands env cont)(apply-
procval proc args cont)(apply-cont cont val)

So we will need seven global registers: exp, env, cont, rands, proc, args, and 
val. Each of these procedures will be replaced by a 0-argument procedure, and each call to one of 
these procedures will be replaced by code that stores the value of each actual parameter in the 
corresponding register and then invokes the new 0-argument procedure. So the fragment



 

(define-datatype continuation continuation?  (halt-cont)  (test-cont    (true-
exp expression?)    (false-
exp expression?)    (env environment?)    (cont continuation?))  (varassign-
cont    (env environment?)    (id symbol?)    (cont continuation?)))  (prim-args-
cont    (prim primitive?)    (cont continuation?))  (let-exp-cont    (ids (list-
of symbol?))    (env environment?)    (body expression?)    (cont continuation?))  (eval-
rator-cont    (rands (list-
of expression?))    (env environment?)    (cont continuation?))  (eval-rands-
cont    (proc expval?)    (cont continuation?))  (eval-first-cont    (exps (list-
of expression?))    (env environment?)    (cont continuation?))  (eval-rest-
cont    (first-value expval?)    (cont continuation?))  )

Figure 7.16 Data structure implementation of continuations (part 1)



 

(define apply-cont  (lambda (cont val)    (cases continuation cont      (halt-
cont () (begin (write val) (newline)))      (test-cont (true-exp false-
exp env cont)        (if (true-value? val)          (eval-expression true-
exp env cont)          (eval-expression false-exp env cont)))      (varassign-
cont (env id cont)            (begin              (setref! (apply-env-
ref env id) val)              (apply-cont cont 1)))      (prim-args-
cont (prim cont)        (let ((args val))          (apply-cont cont (apply-
primitive prim args))))      (let-exp-cont (ids env body cont)        (let ((new-
env (extend-env ids val env)))          (eval-expression body new-env cont)))      (eval-
rator-cont (rands env cont)        (let ((proc val))          (eval-
rands rands env            (eval-rands-cont proc cont))))      (eval-rands-
cont (proc cont)        (let ((args val))          (if (procval? proc)            (apply-
procval proc args cont)            (eopl:error 'eval-
expression              "Attempt to apply non-procedure ~s" proc))))      (eval-first-
cont (exps env cont)        (eval-rands (cdr exps) env          (eval-rest-
cont val cont)))      (eval-rest-
cont (first cont)        (let ((rest val))          (apply-
cont cont (cons first rest))))      )))

Figure 7.17 Data structure implementation of continuations (part 2)



 

(define eval-
expression  (lambda (exp env cont)    (cases expression exp      (lit-
exp (datum)        (apply-cont cont datum))      ...)))

can be replaced by

(define eval-expression  (lambda ()    (cases expression exp      (lit-
exp (datum)        (set! cont cont)        (set! val datum)        (apply-
cont))      ...)))

We can now systematically go through each of our four procedures and perform this 
transformation. We will also have to transform the body of eval-program, since that is where 
eval-expression is initially called. There are just three complications:

1. Often a register is unchanged from one procedure invocation to another. This yields an 
assignment like (set! cont cont) in the example above. We can safely omit such 
assignments.

2. When a field name of a data type happens to be the same as a register name, the field shadows 
the register, so the register becomes inaccessible. For example, in eval-program we have

      (cases program pgm        (a-program (exp)          (eval-
expression exp (init-env) (halt-cont))))

Here exp is locally bound, so we cannot assign to the global register exp. The solution is to 
rename the local variable to avoid the conflict:

      (cases program pgm        (a-program (exp1)          (eval-
expression exp1 (init-env) (halt-cont))))



 

Then we can write

      (cases program pgm        (a-
program (exp1)          (set! exp exp1)          (set! env (init-
env))          (set! cont (halt-cont))          (eval-expression)))

These rebindings occur primarily in apply-cont, where we often use env and cont as field 
names. There are a total of 14 bound variables that need to be renamed in their scopes: 13 in 
apply-cont and one in eval-program.

3. There is an additional complication that might arise in such a translation, though it does not 
occur in our example. Consider transforming a call (f (+ x y) x), where x and y are the 
formal parameters of f. A naive transformation of this call would be:

(begin  (set! x (+ x y))  (set! y x)  (f))

But this is incorrect, because it loads the register y with the new value of x, when the old value of 
x was intended. The solution is either to reorder the assignments so the right values are loaded into 
the registers, or to use temporary variables. Sometimes temporary variables are unavoidable; 
consider (f y x) where x and y are the formal parameters of f.

The result of performing this translation on our interpreter is shown in figures 7.18–7.21. This 
process is called registerization. It is an easy process to translate this into an imperative language.

Exercise 7.19 [ ] Instrument this interpreter as in exercise 7.9. Since continuations are represented the same 
way, reuse that code. Verify that the imperative interpreter of this section generates exactly the same traces as 
the interpreter in exercise 7.9.

Exercise 7.20 [ ] Modify the interpreter of this section so that procedures use dynamic binding, as in 
exercise 3.30. (Hint: do this by transforming the interpreter of exercise 3.30 as we did in this chapter; it will 
differ from the interpreter of this section only for those portions of the original interpreter that are different.) 
Instrument the interpreter as in exercise 7.19. Observe that just as there is only one continuation in



 

(define exp   'uninitialized)(define env   'uninitialized)
(define cont  'uninitialized)(define rands 'uninitialized)
(define val   'uninitialized)(define proc  'uninitialized)
(define args  'uninitialized)(define eval-
program  (lambda (pgm)    (cases program pgm      (a-
program (exp1)        (set! exp exp1)        (set! env (init-
env))        (set! cont (halt-cont))        (eval-expression)))))
(define eval-expression  (lambda ()    (cases expression exp      (lit-
exp (datum)        (set! val datum)        (apply-cont))      (var-
exp (id)        (set! val (apply-env env id))        (apply-
cont))      (proc-
exp (ids body)        (set! val (closure ids body env))        (apply-
cont))      (letrec-exp (proc-names idss bodies letrec-
body)        (set! exp letrec-body)        (set! env          (extend-env-
recursively proc-names idss bodies env))        (eval-expression))

Figure 7.18 Imperative interpreter (part 1)



 

      (if-exp (test-exp true-exp false-exp)        (set! exp test-
exp)        (set! cont (test-cont true-exp false-exp env cont))        (eval-
expression))      (varassign-exp (id rhs-exp)        (set! exp rhs-
exp)        (set! cont (varassign-cont env id cont))        (eval-
expression))      (primapp-exp (prim rands1)        (set! cont (prim-args-
cont prim cont))        (set! rands rands1)        (eval-rands))      (let-
exp (ids rands1 body)        (set! rands rands1)        (set! cont (let-exp-
cont ids env body cont))        (eval-rands))      (app-
exp (rator rands)        (set! exp rator)        (set! cont (eval-rator-
cont rands env cont))        (eval-expression))      )))(define eval-
rands  (lambda ()    (if (null? rands)      (begin       (set! val '())       (apply-
cont))      (begin        (set! exp (car rands))        (set! cont (eval-first-
cont rands env cont))        (eval-expression)))))

Figure 7.19 Imperative interpreter (part 2)

the state, there is only one environment that is pushed and popped, and furthermore, it is pushed and popped in parallel with 
the continuation. We can conclude that dynamic bindings have dynamic extent: that is, a binding to a formal parameter lasts 
exactly until that procedure returns. This is different from lexical bindings, which can persist indefinitely if they wind up in 
a closure.



 

(define apply-cont  (lambda ()    (cases continuation cont      (halt-
cont () (begin (write val) (newline)))      (test-cont (true-exp false-exp old-
env old-cont)        (if (true-
value? val)          (begin            (set! exp true-
exp)            (set! env old-env)            (set! cont old-
cont)            (eval-expression))          (begin            (set! exp false-
exp)            (set! env old-env)            (set! cont old-
cont)            (eval-expression))))      (varassign-cont (old-env id old-
cont)        (begin          (setref! (apply-env-ref old-
env id) val)          (set! cont old-cont)          (set! val 1)          (apply-
cont)))      (prim-args-cont (prim old-
cont)        (let ((args val))          (set! cont old-
cont)          (set! val (apply-primitive prim args))          (apply-
cont)))      (let-exp-cont (ids old-env body old-cont)        (let ((new-
env (extend-env ids val old-env)))          (set! exp body)          (set! env new-
env)          (set! cont old-cont)          (eval-expression)))      (eval-rator-
cont (rands1 old-env old-
cont)        (let ((proc val))          (set! rands rands1)          (set! env old-
env)          (set! cont (eval-rands-cont proc old-cont))          (eval-rands)))

Figure 7.20 Imperative interpreter (part 3)



 

      (eval-rands-cont (old-proc old-cont)        (let ((new-
args val))          (if (procval? old-
proc)            (begin              (set! proc old-
proc)              (set! args new-args)              (set! cont old-
cont)              (apply-procval))            (eopl:error 'eval-
expression              "Attempt to apply non-
procedure ~s" proc))))      (eval-first-cont (old-rands old-env old-
cont)        (set! rands (cdr old-rands))        (set! env old-
env)        (set! cont (eval-rest-cont val old-cont))        (eval-
rands))      (eval-rest-cont (first-val old-
cont)        (let ((rest val))          (set! cont old-
cont)          (set! val (cons first-val rest))          (apply-
cont)))      )))(define apply-
procval  (lambda ()    (cases procval proc      (closure (ids body old-
env)        (set! exp body)        (set! env (extend-env ids args old-
env))        (eval-expression)))))

Figure 7.21 Imperative interpreter (part 4)

Exercise 7.21 [ ] Eliminate the remaining let expressions in this code by using additional global registers.

Exercise 7.22 [ ] Translate the interpreter of this section into an imperative language. Do this twice: once 
using 0-argument procedure calls in the host language, and once replacing each 0-argument procedure call by a 
goto. How do these alternatives perform as the computation gets longer?



 

Exercise 7.23 [ ] As noted on page 260, most imperative languages make it difficult to do this translation, 
because they use the stack for all procedure calls, even tail calls. Furthermore, for large interpreters, the pieces 
of code linked by goto's may be too large for some compilers to handle. Translate the interpreter of this 
section into an imperative language, circumventing this difficulty by using the technique of trampolining, as in 
exercise 7.14.

7.4 Exceptions and Control Flow

So far we have used continuations only to manage the ordinary flow of control in our languages. 
But continuations allow us to alter the control context as well. Let us consider adding exception 
handling to our defined language. We add to the language two new productions:

A try expression first evaluates its second expression (which should evaluate to a procedure of 
one argument). It installs this value as an exception handler and then evaluates its first expression. 
If this expression returns normally, its value becomes the value of the entire try expression, and 
the exception handler is removed.

A raise expression evaluates its single expression and raises an exception with that value. The 
value is sent to the most-recently installed exception handler. It is the job of the handler to 
determine what to do with this exceptional condition. It can either return a value, which becomes 
the value of the associated try expression, or it can propagate the exception by raising another 
exception; in this case the exception would be sent to the next most recently installed exception 
handler.

This is less complicated than it sounds. Let us consider a version of list-index written in our 
defined language. The defined-language procedure index is given a number and a list of 
numbers, and should return the position of the first occurrence of that number in the list, or -1 if it 
does not occur. We can write this as:



 

letrec  index(n, l) =    if null?(l)    then sub1(0)    else if equal?(n,car
(l))         then 0         else let p = (index n cdr
(l))              in if equal?(p,sub1(0))                 then sub1
(0)                 else add1(p)in ...

This code is awkward because we need to check the value for -1 at every level. This might be 
manageable in this example, but would be error-prone if there had been many places where index was 
called. We can avoid this testing by raising an exception when the list becomes empty:

let index = proc (n, l)  letrec    loop(l) = if null?
(l)              then raise sub1(0)              else if equal?(n,car
(l))                   then 0                   else add1((loop cdr
(l)))  in try (loop 1) handle proc (x) xin ...

If the end of the list is found, an exception with value -1 is raised and is passed to the most-recently 
installed exception handler, in this case proc (x) x, so -1 is returned as the value of the call to index. 
If the call to loop returns normally, then we know that the desired element was found, so we can 
safely add 1 to it to find the right answer. In this way, we avoid the repetitious and error-prone manual 
testing for -1.

Implementing this exception-handling mechanism using the continuation-passing interpreter is 
straightforward. We begin with the try expression. We add two new continuation-builders:

  (handler-
cont    (body expression?)    (env environment?)    (cont continuation?))  (try-
cont    (handler expval?)    (cont continuation?))



 

and we add to eval-expression the following clause for try:

          (try-exp (body-exp handler-exp)            (eval-
expression handler-exp env              (handler-cont body-exp env cont)))

and to the specification of continuations the equation

     (apply-cont (handler-cont body-exp env cont) handler-
val)     = (if (procval? handler-val)         (eval-expression body-
exp env           (try-cont handler-val cont))         (eopl:error 'eval-
expression           "Error handler not a procedure: ~s" handler-val))

Now, what happens when the body of the try expression is evaluated? If the body returns 
normally, then that value should be sent to the continuation of the try expression, in this case 
cont:

     (apply-cont (try-cont handler cont) val)     = (apply-cont cont val)

What happens if an exception is raised? Then we need to search through the continuation for the 
nearest handler, which may be found in the topmost try-cont continuation. So in eval-
expression we write

          (raise-exp (exp)            (eval-expression exp env (raise-
cont cont)))

and in the specification of continuations we write

     (apply-cont (raise-cont cont) val)     = (find-handler val cont)

where find-handler is a procedure that finds the closest exception handler and applies it 
(figure 7.22).

To show how all this fits together, let us consider a calculation using a defined language 
implementation of index.



 

(define find-handler  (lambda (val cont)    (cases continuation cont      (try-
cont (handler cont)        (apply-procval handler (list val) cont))      (halt-
cont ()        (eopl:error 'find-
handler          "Uncaught exception ~s" val))      (test-cont (true-exp false-
exp env cont)        (find-handler val cont))      (prim-args-
cont (prim cont)        (find-handler val cont))      ...)))

Figure 7.22 The procedure find-handler

Let exp0 denote the expression

let index = proc (n, l)              letrec                loop (l) = if null?
(l)                           then raise sub1
(0)                           else if equal?(n,car
(l))                                then 0                                else add1
((loop cdr(l)))              in try (loop 1) handle proc (x) xin (index 1 list
(2,3))

let exp1 denote the body of the procedure index, and let exp2 denote the body of the local procedure 
loop. As we did above, we write «exp» to denote the abstract syntax tree associated with the expression 
exp, and we write [x=a, y=b] env in place of (extend-env '(x y) ' (a b) env).

We start exp0 in an arbitrary environment env0 and an arbitrary continuation cont0. We will show only 
the highlights of the calculation, with comments interspersed. In particular, we will not show the evaluation 
of the actual parameters to procedure calls, nor will we show the evaluation of conditionals.



 

(eval-expression exp0 env0 cont0)= execute the body of the let(eval-
expression <<(index 1 list (2,3))>> env1 cont0)    where env1 = 
[index = (closure (n 1) exp1 env0)]env0= evaluate the body of index(eval-
expression exp1 [n=1,1=(2 3)]env1 cont0)= the body of index is a letrec-- 
evaluate the body of the    letrec in a suitably extended environment(eval-expression 
<<try (loop 1) handle proc (x) x>> env2 cont0)    where env2 = [loop=
(closure (1) exp2 env2)] env1= evaluate the handler, yielding a closure, then 
evaluate the body     of the try in a try-cont continuation(eval-expression <<(loop 1)
>> env2  (try-cont (closure (x) <<x>> env2) cont0))= evaluate the body of 
loop with l bound to (2 3)(eval-expression exp2 [1=(2 3)]env2  (try-cont 
(closure (x) <<x>> env2) cont0))= evaluate the conditional, getting to the recursion 
line(eval-expression <<add1((loop cdr(l)))>> [1=(2 3)]env2  (try-
cont (closure (x) <<x>> env2) cont0))= evaluate the argument to add1(eval-
expression <<(loop cdr(l))>> [1=(2 3)]env2  (prim-args-cont 
<<add1>>    (try-cont (closure (x) <<x>> env2) cont0)))= evaluate the 
body of loop with 1 bound to (3)(eval-expression exp2 [1=(3)]env2  (prim-
args-cont <<add1>>    (try-cont (closure (x) <<x>> env2) cont0)))= 
evaluate the conditional, getting to the recursion line again(eval-expression <<add1
((loop cdr(l)))>> [1=(3)]env2  (try-cont (closure (x) <<x>> env2) 
cont0))= evaluate the argument to add1(eval-expression <<(loop cdr(l))
>> [1=(3)] env2  (prim-args-cont <<add1>>    (try-
cont (closure (x) <<x>> env2) cont0)))
= evaluate the body of loop with 1 bound to ()(eval-expression exp2 [1=
()] env2  (prim-args-cont <<add1>>    (prim-args-
cont <<add1>>      (try-cont (closure (x) <<x>> env2) cont0))))



 

= evaluate the raise expression(eval-expression <<raise sub1(0)>> [1=
()] env2  (prim-args-cont <<add1>>    (prim-args-
cont <<add1>>      (try-cont (closure (x) <<x>> env2) cont0))))= 
use find-handler to unwind the continuation until we find a handler(find-handler -
1  (prim-args-cont <<add1>>    (prim-args-cont <<add1>>      (try-
cont (closure (x) <<x>> env2) cont0))))=(find-handler -1  (prim-
args-cont <<add1>>    (try-cont (closure (x) <<x>> env2) cont0)))=
(find-handler -1  (try-cont (closure (x) <<x>> env2) cont0))
= we've found a handler, now apply it(apply-
procval (closure (x) <<x>> env2) '(-1) cont0)= run the body of the procedure
(eval-expression <<x>> [x=-1] env2 cont0)
= send the value of x to the continuation(apply-cont cont0 -1)

If the list had contained the desired element, then we would have called apply-cont instead of 
find-handler, and we would have executed all the «add1»'s in the continuation.

Exercise 7.24 [ ] This implementation is inefficient, because when an exception is raised, find-
handler must search linearly through the continuation to find a handler. Avoid this search by representing 
the continuation as a pair, consisting of a normal continuation and an exception continuation. Then apply-
cont invokes the normal continuation, and find-handler invokes the exception continuation.

Exercise 7.25 [ ] An alternative design that also avoids the linear search in find-handler is to use 
two continuations, a normal continuation and an exception continuation. Achieve this goal by modifying the 
interpreter of this section to take two continuations instead of one.

Exercise 7.26 [ ] Modify the defined language to raise an exception when a procedure is called with the 
wrong number of arguments.

Exercise 7.27 [ ] Modify the defined language to add division as a primitive. Raise an exception on division 
by zero.



 

Exercise 7.28 [ ] The interpreter of this section seems to depend on the data structure representation, since we have two 
observers that examine the structure of the continuation. Re-implement the interpreter of this section using a procedural 
representation of continuations.

Exercise 7.29 [ ] So far, an exception handler can propagate the exception by reraising it, or it can return a value that becomes 
the value of the try expression. One might instead design the language to allow the computation to resume from the point at 
which the exception was raised. Modify the interpreter of this section to accomplish this by running the body of the handler in the 
continuation from the point at which the raise was invoked.

Exercise 7.30 [ ] Give the exception handlers in the defined language the ability to either return or resume. Do this by 
passing the continuation from the raise exception as a second argument. This may require adding continuations as a new kind 
of expressed value. Devise suitable syntax for invoking a continuation on a value.

Exercise 7.31 [ ] The preceding exercise captures the continuation only when an exception is raised. Add to the language the 
ability to capture a continuation anywhere by adding the form letcc <identifier> in <expression> with the specification

(eval-expression (letcc id exp) env cont)= (eval-expression exp    (extend-
env (list id) (list cont) env)    cont)

Such a captured continuation may be invoked with throw: the expression throw <expression> to <expression> evaluates 
the two subexpressions. The second expression should return a continuation, which is applied to the value of the first expression. 
The current continuation of the throw expression is ignored.

Devise a suitable method to invoke such a captured continuation.

Exercise 7.32 [ ] An alternative to letcc and throw of the preceding exercise is to add a single primitive procedure to 
the language. This procedure, which in Scheme is called call-with-current-continuation, takes a 1-
argument procedure, p, and passes to p a procedure that when invoked with one argument, passes that argument to the current 
continuation, cont. We could define call-with-current-continuation in terms of letcc and throw 
as follows:

let call-with-current-
continuation      = proc (p)          letcc cont          in (p proc (v) throw v to cont)
in ...

Add call-with-current-continuation as a primitive. Then write a translator that takes the language with 
letcc and throw and translates it into the language without letcc and throw, but with call-with-current-
continuation.



 

7.5 Multithreading

In many programming tasks, one may wish to have multiple computations proceeding at once. When these computations are run in the 
same address space as part of the same process, they are usually called threads. Threads are sometimes called lightweight processes. In 
this section, we will see how to modify our interpreter to simulate multi-threaded programs by interleaving the steps of their executions.

To do this, we build on the trampolining interpreter of section 7.1. Rather than having a single thread of computation, our multi-
threaded interpreter will maintain several threads. The threads that are not currently running will be kept on a queue called the ready 
queue.

A thread is a computation in progress. There will be two kinds of threads: runnable threads and completed threads. We choose to 
represent runnable threads as 0-argument procedures, and completed threads as symbols. The basic constructor on threads is make-
thread, which builds a runnable thread. Since we are using a procedural representation, make-thread is the identity procedure. 
There are two observers on threads. The procedure run-thread takes a nonnegative integer and a thread; it runs the thread for that 
number of steps, and returns the resulting thread. If the thread becomes non-runnable before the clock runs out, then the resulting non-
runnable thread is returned. We will count each bounce of the trampoline as one step. The procedure run-thread is much like 
trampoline, except that it maintains a counter. We will also need the tester runnable? that checks to see if a thread is runnable.

(define make-thread (lambda (proc) proc))(define run-
thread  (lambda (ticks thread)    (if (runnable? thread)      (if (zero? ticks)        thread        (run-
thread (- ticks 1) (thread)))      thread)))(define runnable? procedure?)

Threads are scheduled for execution by a scheduler. The scheduler takes a number and a thread. The number specifies the number of 
steps in a time slice. If the thread is runnable, it is placed on the ready queue. A thread is then fetched from the ready queue and run, 
using run-thread, for a full



 

time slice. The resulting thread is then scheduled. The procedure schedule is called with a non-runnable thread only 
when there are no more threads to run. In this case, the scheduler halts:

(define schedule  (lambda (quantum thread)    (if (runnable? thread)      (begin        (place-
on-ready-queue thread)        (schedule quantum          (run-thread quantum (get-next-from-
ready-queue))))      thread)))

The ready queue is a global data structure with three operations:

• The procedure initialize-ready-queue, which initializes the queue to empty.

• The procedure place-on-ready-queue, which places a runnable thread on the ready queue.

• The procedure get-next-from-ready-queue, a 0-argument procedure that removes a thread from the ready 
queue and returns it. If the ready queue is empty, then the symbol done!, a non-runnable thread, is returned.

We create the ready queue using the queue interface of section 2.4.

(define the-ready-queue (create-queue))(define initialize-ready-queue  (queue-get-reset-
operation the-ready-queue))(define place-on-ready-queue  (queue-get-enqueue-operation the-
ready-queue))(define get-next-from-ready-queue  (let ((empty? (queue-get-empty?-operation the-
ready-queue))        (dequeue          (queue-get-dequeue-operation the-ready-
queue)))    (lambda ()      (if (empty?) the-final-answer (dequeue)))))

Now, how do we use this scheduler with our defined language?

• We need to start the program by creating and scheduling an initial thread:



 

    (define eval-program      (lambda (quantum pgm)        (initialize-
ready-queue)        (cases program pgm          (a-
program (exp)            (schedule quantum              (make-
thread                (lambda ()                  (eval-
expression exp                    (init-env)                    (halt-
cont)))))))))

We start programs by using the procedure run-with-quantum:

    (define run-with-quantum      (lambda (quantum string)        (eval-
program quantum (scan&parse string))))

• As in the trampolining interpreter, we modify apply-cont to return a thread rather than 
actually applying the continuation:

• We add a new production,

to our grammar. Executing a spawn expression causes a new thread to be created and placed on 
the ready queue, so its evaluation proceeds concurrently with the current thread. The new thread 
evaluates the subexpression in the current environment. But in what continuation should this 
subexpression be evaluated? We choose to evaluate the subexpression in a continuation that when 
executed simply allows its thread to die. Even though the new thread cannot return a value to its 
parent, it can communicate with its parent via shared variables. Hence we write in eval-
expression:



 

               (spawn-
exp (exp)                 (begin                   (place-on-ready-
queue                     (make-
thread                       (lambda ()                         (eval-
expression exp env (die-cont)))))                   (apply-cont cont 1)))

A spawn expression returns immediately with 1 as its value, signifying successful creation of the 
thread.

The continuation (die-cont) should ignore the value sent to it and allow its thread to die by 
simply getting the next thread from the ready queue and returning it:

       (apply-cont (die-cont) val)       = (get-next-from-ready-queue)

This thread is returned to the trampoline, so it takes over the remainder of the current thread's time 
slice. In this specification, we have ignored the (make-thread (lambda () ...)) that is 
wrapped around the body of apply-cont.

• What should happen when the initial continuation (halt-cont) is executed? Unlike (die-
cont), (halt-cont) should print an answer, as it did before. But there may be other threads 
waiting to execute afterwards. So (halt-cont) should print out its answer and then die, 
allowing the remaining threads to execute by calling (get-next-from-ready-queue). 
This leads to the following specification:

       (apply-cont (halt-cont) val)       = (begin           (eopl :
printf "final answer is: ~a~%" val)           (get-next-from-ready-queue))

Here we have added a distinctive label to this outcome to help distinguish it from the output of 
other threads.

Figure 7.23 shows some programs using threads in our defined language. The first two programs 
illustrate how threads can communicate via shared variables. The program pgm5-1 spawns a 
thread that sets the variable acc to 20. The main thread then enters a busy-waiting loop that waits 
for acc to



 

become non-zero, and returns its value. The program pgm5-2 sets up a three-stage pipeline, in 
which the first thread puts 20 in buf1, the second waits for buf1 to fill, adds 2 to the result, and 
puts the resulting value in buf2. The third thread similarly waits for buf2 to fill, adds 2 to the 
result, and puts the resulting value in buf3. The body of the program waits for buf3 to fill and 
reports the answer. Last, the program pgm5-3 illustrates the interleaving of different threads. The 
procedure noisy recurs linearly down a list, printing out the list at each step. The output of 
running these programs is shown in figure 7.24. In the final example, why does the computation 
continue well after the main thread has finished?

Exercise 7.33 [ ] How does the behavior of pgm5-3 change as the time slice changes?

Exercise 7.34 [ ] Add to the defined language a construction die that kills the current thread.

Exercise 7.35 [ ] Add to the defined language a construction yield that causes the current thread to 
yield the remainder of its time slice.

Exercise 7.36 [ ] Instead of representing a thread as a 0-argument procedure, represent it as a data structure 
containing the same 0-argument procedure. Then modify run-thread to check to see that its argument is 
a legal thread.

Exercise 7.37 [ ] Replace the procedural representation of threads with a data structure representation.

Exercise 7.38 [ ] In apply-cont, move (make-thread (lambda () ...)) inside 
the cases and replace the procedural representation with a data structure representation with a separate 
constructor for each instance of make-thread. What are the trade-offs between this representation and 
the one in the preceding exercise?

Exercise 7.39 [ ] Modify the thread package to include thread identifiers. To do this, change the 
grammar of spawn expressions to be

Each new thread gets a fresh number (its thread identifier). When the child thread is spawned, it receives its 
number as the binding of the identifier. The child's number is returned to the parent as the value of the 
spawn expression. Instrument the interpreter to trace the creation of thread identifiers. Check to see that the 
ready queue contains at most one thread for each thread identifier. What should be done about the thread 
identifier of the original program?

Exercise 7.40 [ ] Add to the interpreter of the preceding exercise a kill facility. The kill construct, 
when given a thread number, finds the corresponding thread on the ready queue and removes it. In addition, 
kill should return 1 if the target thread is found and 0 if the thread number is not found on the ready queue.



 

let acc = 0 done = 0in let d = spawn set acc = 20   in letrec        loop () = if acc                  then let d = set done = 1                       in acc                  else (loop)      in (loop)

Program pgm5-1

let buf1 = 0 buf2 = 0 buf3 = 0in let d1 = spawn set buf1 = 20       d2 = spawn letrec                    loop () = if buf1                              then set buf2 = +(buf1,2)                              else (loop)                  in (loop)       d3 = spawn letrec                    loop () = if buf2                              then set buf3 = +(buf2,2)                              else (loop)                  in (loop)   in letrec        loop () = if buf3 then buf3 else (loop)      in (loop)

Program pgm5-2

letrec  noisy (l) = let d = print(1)              in if null?(l)                 then 0                 else (noisy cdr(l))in let d1 = spawn (noisy list(1,2,3,4,5))       d2 = spawn (noisy list(6,7,8,9,10))       d3 = spawn (noisy list(11,12,13,14,15,16,17))   in 33

Program pgm5-3

Figure 7.23 Some programs using threads



 

> (run-with-quantum 50 pgm5-1)final answer is: 20done!> (run-with-
quantum 50 pgm5-2)final answer is: 24done!> (run-with-quantum 50 pgm5-3)
final answer is: 33(1 2 3 4 5)(2 3 4 5)(6 7 8 9 10)(7 8 9 10)
(11 12 13 14 15 16 17)(12 13 14 15 16 17)(3 4 5)(4 5)(5)(8 9 10)(9 10)(10)
(13 14 15 16 17)(14 15 16 17)(15 16 17)()()(16 17)(17)()done!

Figure 7.24 Sample output from thread programs

Shared variables are an unreliable method of communication if several threads try to write to the 
same variable. Consider the program in figure 7.25. Two threads each try to increment the same 
variable twice. The main loop waits for both of the threads d1 and d2 to finish. But if a thread 
switch occurs between reading and writing the variable, unpredictable behavior can result.

Exercise 7.41 [ ] If we vary the size of the time slice, how many different results can this program produce?



 

let x = list(0) done1 = 0 done2 = 0in let d1 = spawn begin                    setcar(x, add1(car
(x)));                    setcar(x, add1(car(x)));                    print(list(1,car
(x)));                    set done1 = 1                  end       d2 = spawn begin                    setcar
(x, add1(car(x)));                    setcar(x, add1(car(x)));                    print(list(2,car
(x)));                    set done2 = 1                  end   in letrec        loop () = if equal?
(done1, 1)                  then if equal?(done2, 1)                       then print(list(0,car
(x)))                       else (loop)                  else (loop)      in (loop)

Figure 7.25 Shared variable example with two threads: unreliable

There are many ways to design a better synchronization facility for threads. A simple one is locks, which has the following interface.

• lock <expression>: evaluates the expression and creates a lock containing the resulting value. The value of the expression is the lock.

• acquire <expression>: evaluates the expression, which should return a lock. If no other thread has acquired the lock, then the current 
thread acquires the lock and the expression returns the value held in the lock. Otherwise, the thread waits until the lock is free.

• release <expression>: evaluates the expression, which should return a lock. It releases the lock and returns 1.

We implement the lock as a data structure containing an integer-valued cell (as in exercise 2.26), indicating whether the lock is occupied, 
and a value:



 

(define-datatype lock lock?  (a-
lock    (occupied      (lambda (x)        (and (cell? x) (integer? (contents x)))))    (value expval?)))

We add three clauses to eval-expression, while extending the set of expressed values to include locks.

      (lock-exp (exp)        (eval-expression exp env          (lock-cont cont)))      (acquire-
exp (exp)        (eval-expression exp env          (acquire-cont cont)))      (release-
exp (exp)        (eval-expression exp env          (release-cont cont)))

In addition, we add three clauses to apply-cont and we extend the associated data type of continuations accordingly. (See figure 
7.26.)

For lock, we construct a new lock containing a cell initialized to zero, indicating that the lock is unoccupied, and the locked value.

For acquire, we check that the value passed to it is a lock; if it is, we check to see whether it is already occupied. If it is 
unoccupied, then we mark it as occupied by setting its occupied cell to 1, and we return its value to the continuation cont1 of 
the acquire. If it is occupied, we place the current thread on the ready queue (by calling (apply-cont cont val), which 
returns a thread), and call get-next-from-ready-queue to get the next runnable thread. In this way the current thread will 
repeatedly try the lock until it is unoccupied. Since this code is within a single call to apply-cont, it will be executed without 
interruption, so no race condition can occur.

Last, for a release, we check to see whether the lock is occupied; if it is, we release it by setting its occupied cell to 0. It is an 
error to attempt to release a lock that is not occupied.

Figure 7.27 is the same program as figure 7.25, using a lock to synchronize access to the shared list cell. This time the final value of 
the list is (4), regardless of the length of the time slice.

Exercise 7.42 [ ] The algorithm used for acquire is called a spin lock. This can be wasteful if the lock may be held for a long time, because the 
waiting thread will continually retry the lock. Avoid this by associating a queue of waiting threads with



 

(define apply-cont  (lambda (cont val)    (make-thread      (lambda ()        (cases continuation cont          (lock-
cont (cont)            (let ((c (cell 0)))              (apply-cont cont (a-lock c val))))          (acquire-
cont (cont1)            (if (lock? val)              (cases lock val                (a-
lock (occupied value)                  (if (= (contents occupied) 0)                    (begin                      (setcell occupied 1)                      (apply-
cont cont1 value))                    (begin                      (place-on-ready-queue                        (apply-cont cont val))                      (get-next-
from-ready-queue)))))              (eopl:error 'acquire-cont                "Non-lock to acquire: ~s~%" v)))          (release-
cont (cont)            (if (lock? val)              (cases lock val                (a-
lock (occupied value)                  (if (= (contents occupied) 1)                    (begin                      (setcell occupied 0)                      (apply-
cont cont 1))                    (eopl:error 'release-cont                      "Must acquire lock before releasing"))))              (eopl:error 'release-
cont                "Non-lock to release: ~s~%" v)))          ...)))))

Figure 7.26 lock, release, and acquire



 

let 1 = lock list(0)    done = 0in let t1 = spawn let c = acquire 1                  in begin                       setcar(c, add1(car(c)));                       setcar
(c, add1(car(c)));                       print(list(1,car(c)));                       set done = add1
(done);                       release 1                     end       t2 = spawn let c = acquire 1                  in begin                       setcar(c, add1(car
(c)));                       setcar(c, add1(car(c)));                       print(list(2,car(c)));                       set done = add1
(done);                       release 1                     end   in let v = 0      in letrec loop() = if equal?
(done, 2)                         then let c = acquire 1                              in begin                                   set v = car
(c);                                   release 1;                                   v                                 end                         else (loop)         in (loop)

Figure 7.27 Shared variable example with two threads: reliable

each lock. (This is sometimes called a sleep queue). If a thread attempts to acquire an occupied lock, it places itself on the queue for that lock. When a lock is released, it wakes up the first thread on its queue.

Exercise 7.43 [ ] Our code for release is insecure, because a thread could release a lock owned by another thread. Use the mechanism of thread identifiers to guarantee that release can only release a lock held by the current thread.

Exercise 7.44 [ ] In most languages, constructions like lock, acquire, and release take the form of operating system calls. Rewrite the interpreter to make these constructions primitives, rather than syntactic constructions.



 

Exercise 7.45 [ ] Before threads came into widespread use, some programming languages had coroutines to 
accomplish similar goals on a single processor. A coroutine is like a procedure, except that when it transfers 
control to another coroutine, it keeps track of its current continuation. Control leaves one continuation and 
enters another using the operation resume, which takes two arguments: a coroutine, to which it transfers 
control, and a value to be passed to that coroutine.

A coroutine may be implemented as a cell that contains a continuation. Initially, that continuation should 
execute the body of the coroutine (in some suitable initial continuation, as we did for threads). In this model, 
after the resume operation evaluates its arguments, it saves the current continuation in its own coroutine's 
cell. It then extracts the continuation from the target coroutine's cell, and sends the value to that continuation. 
The effect is that the value appears as the result of the resume by which the target coroutine relinquished 
control.

Implement this model of coroutines.

7.6 Logic Programming

We normally think of append as a procedure that takes two lists and returns the concatenation of 
the two lists. But, we can also think about the problem this way: given the resultant list and the 
first list, what should the second list be? If we are also not given the first list, what two lists could 
be passed to append to make the resultant list? Problems like this are some of the motivations for 
logic programming. In this section, we explore a rudimentary implementation of logic 
programming. Our implementation uses continuation-passing style to organize the control 
structure of the program.

In logic programming, we start with a list of goals to be solved. The goals are solved by reducing 
them using a global set of rules. A rule is defined to be a list of the form (h <-- t1 . . . tn), where h, 
t1, . . ., tn are terms (exercise 2.13). The h is called the head term and the t1 . . . tn are called the 
subgoal terms. The rule says that one way to find a solution of the head h is to find a solution for 
the subgoals t1, . . ., tn.

For example, here are the rules for append.

(("append" "empty" x x) <--)(("append" ("cons" w x) y ("cons" w z))
<-- ("append" x y z))

The first rule may be read as saying that "append" applied to "empty" and any value x returns 
that value x. The second rule says that if "append" applied to some values x and y returns z, then 
"append" applied to ("cons" w x) and y returns ("cons" w z). Using the terminology of



 

subgoals, we can read these rules as saying that any goal of the form ("append" "empty" x x) is immediately solved, 
and that any goal of the form ("append" ("cons" w x) y ("cons" w z)) may be solved by solving ("append" x y z).

For these rules, some sample goal terms might be

("append" ("cons" 1 ("cons" 2 "empty")) y  ("cons" 1 ("cons" 2 ("cons" 3 ("cons" 4 "empty")))))

and

("append" x y  ("cons" 1 ("cons" 2 ("cons" 3 ("cons" 4 "empty")))))

The first goal determines that y must be ("cons" 3 ("cons" 4 "empty")), but the second goal is satisfied by 
five different sets of values for x and y.

The interpreter evaluates a goal term by comparing it to the head of each rule. If the goal unifies (exercise 2.25) with the 
head term of a rule, then the unifying substitution is applied to each of the subgoals (if any) of the rule, and the resulting 
terms are added as goals to be evaluated. We keep track of the substitutions as they are applied; if eventually all the 
subgoals are satisfied, then the resulting substitution is said to be a solution of the original goal.

When we try to evaluate a subgoal that does not match the head of any rule, we say that the subgoal has failed. In this 
situation, the interpreter backtracks to the last application of a rule, and tries the next applicable rule instead. Backtracking 
is done in a stack-like fashion: the last rule applied is always the first to be undone. Upon backtracking, the computation 
reverts to an earlier substitution.

For example, consider the following set of rules:

(("p" x) <-- ("q" x) ("r" x))(("p" x) <-- ("s" x))(("q" 1) <--)(("r" 2) <--)(("s" 3) <--)

and the goal term ("p" x). The interpreter would try the first rule, giving the subgoals ("q" x) and ("r" x). The 
first of these would succeed, yielding the value 1 for x. The second subgoal would then fail, since there is no rule 
applicable to ("r" 1). Hence the system must backtrack to the application of the first rule, and try the second rule 
instead. The second rule would



 

find the subgoal ("s" x), which would then succeed, yielding a substitution that associates the 
x in the goal term to 3.

In order to organize this control structure, we use two continuations: a success continuation that 
records what to do when a unification step succeeds, and a failure continuation that keeps track of 
what to try next at each potential backtrack point. Each new failure continuation represents a new 
backtrack point and closes over the substitution with which to continue the computation.

A failure does not return anything to its failure continuation, so we model failure continuations as 
0-argument procedures. A success continuation takes two arguments: a solution (a substitution) 
and a failure continuation that gives access to more results.

The procedure solve-terms takes as its argument a list of goals (with possibly one element, as 
in our examples). It calls match-terms with the list of goals, an empty substitution, an initial 
success continuation, and an initial failure continuation. If it succeeds, the success continuation 
applies the substitution to the initial list of goals and unparses the result for readability.

(define solve-terms  (lambda (goals)    (match-terms goals (empty-
subst)      (lambda (subst failure-fk)        (unparse-terms (subst-in-
terms goals subst)))      (lambda () #f))))

The procedure match-terms and its auxiliary procedures are in figure 7.28. Its arguments are a 
list of goals to be satisfied, a substitution, a success continuation, and a failure continuation. It 
attempts to satisfy each of the goals. If there are no goals to satisfy, then it passes to its success 
continuation the current substitution and the current failure continuation. Otherwise, it calls 
match-term to try to solve the first goal. It passes to match-term a continuation that 
specifies that if the first goal can be solved with a substitution new-subst, then the computation 
should continue by solving the rest of the goals, using the new substitution. This sequence of goals 
corresponds to a logical conjunction ("and") of the goals. The continued computation uses the 
failure continuation new-fk so that the next failure will backtrack to the chronologically last 
backtrack point.

The procedure match-term attempts to solve a single term by invoking match-term-
against-rule for each rule. The failure continuation passed along to it ensures that on failure, 
we continue searching the rest of the rules. The rules are kept in the global variable the-rules. 
If no matching rule is



 

(define match-
terms  (lambda (goals subst sk fk)    (if (null? goals)      (sk subst fk)      (match-
term (car goals) subst        (lambda (new-subst new-fk)          (match-
terms (cdr goals) new-subst sk new-fk))        fk))))(define match-
term  (lambda (goal subst sk fk)    (let loop ((rules the-
rules))      (if (null? rules)        (fk)        (match-term-against-
rule goal (car rules) subst sk          (lambda ()            (loop (cdr rules))))))))
(define match-term-against-
rule  (lambda (goal rule subst sk fk)    (let ((instantiated-
rule (instantiate rule)))      (let ((head (rule->head instantiated-
rule))            (subgoals (rule->subgoals instantiated-rule)))        (let ((new-
subst                (unify-term                  (subst-in-
term head subst)                  (subst-in-term goal subst))))          (if (not new-
subst)            (fk)            (match-terms subgoals              (compose-
substs subst new-subst)              sk fk)))))))

Figure 7.28 Procedures for logic programming

found, we report failure by invoking the failure continuation. Such a loop in the failure continuation represents a 
logical disjunction ("or"): if one thing doesn't work, we try the next one.

Finally, match-term-against-rule matches a term against a single rule. It first creates a fresh instance 
of the rule, renaming all of the variables in the rule with fresh variables. It then applies the current substitution 
to the



 

goal term and the head of the freshly instantiated rule, and attempts to unify them. If this fails, 
then the failure continuation is invoked, which will try the next rule. Otherwise, the resulting 
substitution is added to the current substitution, and the procedure calls match-terms to solve 
the subgoals.

We see that match-terms is called from two places: solve-terms and match-term-
against-rule. Since the first argument to match-terms from within match-term-
against-rule is a list of instantiated subgoals, we treat the argument to solve-terms in the 
same fashion.

Exercise 7.46 [ ] Implement the procedure instantiate, which takes a rule as an argument and 
replaces each variable's identifier by a unique identifier. If two identifiers are the same, they should be 
replaced by the same unique identifier. Each time a rule is instantiated, its unique identifiers must change. 
Why? One way to create unique identifiers is to define a variant of fresh-id (exercise 2.11) for terms that 
keeps track of every unique identifier generated. Another way would be to use gensym, which is available 
on most Scheme implementations.

Exercise 7.47 [ ] Implement a set of rules for even-length such that ("even-length" x) 
succeeds if and only if x is a list of even length. Represent lists as in the append example of this section. 
Hint: consider the mutually-recursive definition of even and odd of section 3.6.

Exercise 7.48 [ ] Implement a version of solve-terms that produces a finite list of results, not just 
the first one. Then, test solve-terms with the append rules on each of the two sample goal terms. 
Finally, implement and test an improvement to this interface when the number of results is unbounded.

Exercise 7.49 [ ] Design a concrete syntax for logic programming, and modify this interpreter to use it.

Exercise 7.50 [ ] Include (fails t) as a new kind of subgoal term. If t succeeds, then the term fails. If t 
fails, then the term succeeds and continues with the substitution that existed prior to the interpretation of the 
fails term.

Exercise 7.51 [ ] One modification that is often used in logic programming languages is to require each rule 
head to be an app term whose first term is a string constant, called a functor. Redefine an app-term to be 
a symbol (corresponding to the functor) and a list of terms (corresponding to the rest of the terms), to take 
advantage of this modification. This improves match-term, since the functor symbol can also be used as 
a key to find the appropriate set of rules in a global table. Implement these ideas.

Exercise 7.52 [ ] The cut operator in logic programming is a mechanism for reducing the amount of 
search that occurs. In a language that supports cut and the modification of the preceding exercise, the global 
set of rules is divided into subsets, whose heads all have the same functor symbol and the same number of 
subterms. For example, the rules for "append" might be one such subset. A cut is a special subgoal that 
always succeeds. If it is backtracked into, however, it abandons not just



 

the rule in which it occurs, but the entire subset in which the rule appears. Consider the example above, with 
the two "p" rules in the same subset. Then if there is a cut between ("q" x) and ("r" x), the goal 
term fails, since (("p" x) <-- ("s" x)) would not be tried. Treat the argument to solve-
terms as an already instantiated headless rule, thus placing it into its own subset. Extend the term data 
type to include cut-term and implement cut.

Exercise 7.53 [ ] It is possible to remove the occurs check in unify-term Doing this requires the 
programmer to ensure that no unsound unifying substitutions will occur, but it has been the standard in most 
logic languages. Implement this modification.

Exercise 7.54 [ ] Consider the modifications made in exercises 7.51 and 7.53. Give some example 
programs that can be written with the unmodified version that cannot be written with the modified version?

Exercise 7.55 [ ] Add terms of the form (istrue e) and (is t e), where t is any term and e is an 
expression consisting of constants, variable references and primitive applications. Include numeric valued 
primitives as in section 3.1 and exercise 3.11. The expressions must be evaluated in the substitution (treated as 
an environment) by a separate interpreter. An istrue term succeeds if its expression's value is true and 
fails otherwise. An is term unifies its subterm with the value of its expression.

Exercise 7.56 [ ] A substitution that fails the occurs check could be regarded as introducing a recursive 
association, somewhat like the way bindings are built to implement letrec expressions. Implement an 
extension of unification that takes advantage of this observation and as such does not include the occurs check.

Further Reading

(Reynolds, 1993) gives a fascinating history of the several independent discoveries of 
continuations and the CPS transform. (Strachey & Wadsworth, 1974; 2000) is probably the most 
influential of these. (Reynolds, 1972; 1998) transforms a metacircular interpreter into CPS and 
shows how this avoids some of the problems of metacircularity. The translation of programs in tail 
form to imperative form dates back to (McCarthy, 1962).

(Wand, 1980a; 1999) introduces the use of continuations as a model for lightweight processes or 
threads. Continuations may also be used for a variety of purposes beyond those discussed in the 
text, such as coroutines (Haynes, Friedman, & Wand, 1986) and program transformations (Wand, 
1980b). (Clocksin & Mellish, 1994) is a standard text on logic programming. The two-
continuation model used here was introduced in (Federhen, 1980).

The efficient implementation of continuations is treated in (Hieb, Dybvig, & Bruggeman, 1990) 
and (Clinger, Hartheimer, & Ost, 1999). (Clinger, 1998) discusses some of the subtleties of tail 
recursion.



 

8 Continuation-Passing Style

In chapter 7, we took an interpreter and rewrote it so that all of the major procedure calls were tail 
calls. By doing so, we guaranteed that the interpreter built up at most a bounded amount of control 
context, no matter how large or complex a program it was called upon to interpret. This property is 
called iterative control behavior.

We achieved this goal by passing an extra parameter, the continuation, to each procedure. This 
style of programming is called continuation-passing style, and it is not restricted to interpreters.

Of course, there is no completely general way of determining whether the control behavior of a 
procedure is iterative or not. Consider

(lambda (n)  (if (strange-predicate? n)    (fact n)    (fact-iter n)))

This procedure is iterative only if strange-predicate? returns false for all sufficiently large 
values of n. But it is not always possible to determine the truth or falsity of this condition, even if 
it were possible to examine the code of strange-predicate?. Therefore the best we can 
hope for is to make sure that no procedure call in the program will build up control context, 
whether or not it is actually executed.

In this chapter we develop a systematic method for transforming any procedure into an equivalent 
procedure that has iterative control behavior. This is accomplished by converting it into 
continuation-passing style.



 

8.1 Tail Form

Our goal is to identify the class of expressions in which no procedure call is in a position that 
requires control context to be built. We will say that such expressions are in tail form.

Recall our principle from chapter 7:

It is evaluation of actual parameters, not the calling of procedures, that requires creating a 
control context.

Thus in

(define fact  (lambda (n)    (if (zero? n) 1 (* n (fact (- n 1))))))

it is the position of the call to fact as an operand that requires the creation of a control context. 
By contrast, in

(define fact-iter  (lambda (n)    (fact-iter-acc n 1)))(define fact-iter-
acc  (lambda (n a)    (if (zero? n) a (fact-iter-acc (- n 1) (* n a)))))

none of the procedure calls are in operand position. We say these calls are tail calls because their 
value is the result of the whole call.

Our goal in this section is to define formally the notion of a tail-form expression. In order to do 
this we need to identify two things:

• We identify those places where evaluation of an expression would not require a control context 
to be generated. We call these the tail positions of the language, and we say that procedure calls in 
these positions are tail calls.

• We identify a syntactic class of expressions that are guaranteed not to execute any procedure 
calls. We say such expressions are simple.

We will eventually say that an expression is in tail form if every subexpression in non-tail position 
is simple. Since simple expressions contain no procedure calls, this means that procedure calls can 
occur only in tail position, and therefore do not build any control context.



 

Figure 8.1 Grammar for source language

But first we need to make all of this precise. We use the language of section 3.6, whose grammar 
is summarized in figure 8.1.

For each expression of this language, we can classify its immediate subexpressions into two 
classes:

• A subexpression in head position is one that must be evaluated, could be evaluated first, and is 
evaluated in the environment of the entire expression. An expression may have more than one 
head position because our interpreter does not, for example, specify the order of evaluation of the 
actual parameters of a procedure.

• A subexpression in tail position has the property that if it is evaluated, its value immediately 
becomes the value of the entire expression. For procedures defined by proc or letrec, the 
meaning of this criterion is explained below. For a subexpression in tail position, no information 
need be saved, and therefore no control context need be built. An expression may have more than 
one tail position because, for example, our if expressions may choose either the true or the false 
branch.

We show these positions for the language of figure 8.1 in figure 8.2. Head positions are indicated 
by H and tail positions by T.

We justify the entries in this figure as follows. Literals and variables are not listed, because they 
have no subexpressions. In a conditional, the test is



 

Figure 8.2 Head (H) and tail (T) positions in the source language

always evaluated first, so it is in head position. When one of the branches of a conditional is 
evaluated, its value becomes the value of the entire conditional, so the branches are both in tail 
position. In a let expression, each of the right-hand sides must be evaluated, so they are all in 
head position; the value of the body becomes the value of the entire expression, so it is in tail 
position. In a proc, the body is in tail position because its value will become the value of the 
application when it is invoked. In a procedure application, all of the subexpressions must be 
evaluated, so they are in head position. None of them is in tail position, because after they are all 
evaluated the procedure body is executed. In letrec declarations, the bodies are in tail position 
as they are for a proc expression, and the letrec body is in tail position.

In an expression, every subexpression except the entire expression appears as an immediate 
subexpression of some other subexpression. We can therefore classify every subexpression by 
whether it appears in a head position or a tail position of its immediate parent expression. For 
example, consider if zero? (x) then (f x) else (g (h y)). Here zero? (x) 
appears in head position, and (f x) and (g (h y)) appear in tail position. The expressions 
f, g, (h y), and both occurrences of x occur in head position. The expressions h and y also 
occur in head position.

Exercise 8.1 [ ] For each expression, underline all of the subexpressions that appear in head position.

1. if (g x) then (f add1(b)) else (b (c x))

2. proc(u)(f if (g x) then (g (h y)) else u)

3. (f if zero?(x) then (g (h 3)) else (g 4))

4. (f if zero?(x) then 3 else 4 if (p x) then 3 else 4)

5. let x = 3 y = (fact 4) in (p x b)



 

Exercise 8.2 [ ] Write a table like the one above showing head and tail positions for the fragment of the 
Scheme language used in the interpreter of section 3.6. Treat the cases form as a nested if. Now, when a 
subexpression in tail position of the defined language is evaluated, the corresponding call to eval-
expression will also be in tail position.

Exercise 8.3 [ ] If the language included set, would the right-hand side of the assignment be in head 
position, tail position, both, or neither?

Exercise 8.4 [ ] Add to the language a construct that has some subexpressions that are in neither head nor 
tail position according to our criteria. Invent a construct with a subexpression that is in both head and tail 
position.

Exercise 8.5 [ ] Extend the CPS transformation to handle letinorder x1 = e1 x2 = e2 in e3. Here 
the scope of x1 is e2 and e3, and the scope of x2 is e3, like the let* of Scheme. Observe that e2 is neither in 
head nor tail position. This will require a new rule.

We now turn to the definition of those expressions that can never cause a procedure call. These are 
the simple expressions. We define these inductively:

Definition 8.1.1 The simple expressions are defined as follows:

• A literal or a variable reference is always simple.

• A primitive application is simple if and only if all of its operands are simple.

• A conditional expression is simple if and only if all three of its subexpressions are simple.

• A let expression is simple if and only if all of its subexpressions are simple.

• A proc expression is always simple.

• A letrec expression is simple if and only if its body is simple.

• A procedure application is never simple.

The intent of this definition is that the evaluation of a simple expression is just a short sequence of 
primitive operations, possibly with some closure creations and tests. Closure creation and 
letrec are treated in this category because they are simple data structure operations. Because 
the body of a closure is not evaluated when the closure is constructed, its body need not be simple, 
but all other subexpressions of a simple expression must be simple.

Exercise 8.6 [ ] Draw a rectangle around every non-simple expression in exercise 8.1 that occurs in head 
position.



 

Exercise 8.7 [ ] Write a Scheme procedure simple? that takes an abstract syntax tree for the defined 
language and tests whether it is simple.

Exercise 8.8 [ ] Write simple? (see previous exercise) for the language of Scheme expressions of 
exercise 8.2.

We can now give the key definition:

Definition 8.1.2 A tail-form expression is one in which every subexpression in non-tail position is 
simple.

In this definition, the phrase "every subexpression" means not just the immediate subexpressions, 
but all subexpressions. So in a tail-form expression, the non-tail positions contain simple 
expressions that are also in tail form, and the tail positions contain tail-form expressions. This 
leads us to the grammar for tail-form expressions shown in figure 8.3. We say "non-tail position" 
because in some languages there may be subexpressions that are in neither head nor tail position.

Expressions may be in tail form but not simple, or simple but not in tail form. For example,

    add1(x) simple tail form
    if p then x else add1(add1(x)) simple tail form
    (f +(x,y)) not simple tail form
    add1((f x)) not simple not tail form
    if p then x else (f sub1(x)) not simple tail form
    if (f x) then x else (f sub1(x)) not simple not tail form
    proc(x) (f x) simple tail form
    proc(x) add1((f x))) simple not tail form

These examples also demonstrate that not every tail-form expression is in continuation-passing 
style: the tail-form expressions in this table have no obvious continuations, nor could they be 
generated by the CPS algorithm in this chapter, but they are nevertheless in tail form.

Because we know that when an application in tail position is evaluated, no control information 
need be stored, and because in a tail-form expression all procedure applications are in tail position, 
we conclude:

Tail form implies iterative control behavior.

If an expression is in tail form, and any procedures accessible through variable bindings are also in 
tail form, then the expression will execute with iterative control behavior.



 

Figure 8.3 Grammar for tail-form expressions

As an example, consider an instance of the factorial procedure in our defined language:

letrec  fact (n) =    if zero? (n)    then 1    else *(n, (fact sub1(n)))
in (fact 4)

This is not in tail form, because the recursive call to fact occurs in an operand position. If we 
give fact an additional continuation argument, then we can rewrite this program in tail form as



 

letrec  fact(n, k) =    if zero?(n)    then (k 1)    else (fact sub1
(n) proc(val)(k *(n,val)))in (fact 4 proc(val)val)

Here we have used a procedural representation of continuations. If n is 0, then (fact n k) 
sends 1, the value of 0!, to k. If n is nonzero, then (fact n k) computes (n − 1)!, calls the 
value val, and sends the value of *(n, val), namely n × (n − 1)! = n! to k, as desired.

In the next section, we shall see how to convert any program in our defined language into tail form 
by using continuation-passing style.

Exercise 8.9 [ ] Determine whether each of the following expressions is simple and whether it is in tail form.

1. add1((f sub1(x)))

2. (f add1(*(x,y)))

3. if zero?(x) then +(x,y) else add1(-(x,y))

4. let x = proc(y) (y x) in +(x,3)

5. let f = proc(x)x in (f 3)

Exercise 8.10 [ ] Write a Scheme procedure tail-form? that takes a program in the language of 
figure 8.1 and determines whether or not it is in tail form, by checking the abstract syntax tree of the program 
against the grammar of figure 8.3.

Exercise 8.11 [ ] Write a grammar similar to that of figure 8.3 for the subset of Scheme consisting of the 
following forms: variable, literal, primitive application, application, if, cond, lambda, let, and 
letrec. Make reasonable assumptions about what constitutes a primitive application. Write a procedure to 
test whether an expression in Scheme, according to this grammar, is in tail form.

8.2 Converting to Continuation-Passing Style.

In this section we develop a set of rules for transforming any program in our defined language into 
an equivalent program in tail form. We do this by transforming the program into continuation-
passing style.

The continuation-passing interpreter of chapter 7 suggests how a CPS transformation might be 
accomplished. The CPS transformation changes the procedure-calling convention so that every 
procedure takes an extra argument: the continuation to which the answer should be passed. It is 
then



 

possible to transform every expression so that only simple expressions occur in non-tail positions.

Since our defined language does not have data structures like those built by define-
datatype, we will use the procedural representation of continuations throughout.

The transformation is accomplished by three operations:

1. The first operation, denoted , transforms a whole program into a procedure that accepts a 
continuation and then performs a calculation. The intention is that if P is the whole program, then (

 proc(val)val) should return the same answer as P.

2. The second operation, denoted , takes a simple expression and transforms it by modifying 
each procedure occurring in the expression. Each procedure is transformed by adding an extra 
formal parameter k and by transforming the body so that instead of simply returning a value, it 
passes the same value to the continuation k. The transformation of the body is accomplished by 
the third operation.

3. The third operation is denoted . If E is an expression and K is a simple expression, 
then  will be a tail-form expression that sends the value of E to the continuation K. 
This operation is the heart of the CPS transformation.

Starting with these informal specifications, we can now describe these operations in more detail.

1. The transformation on programs can be written as

where k is a fresh variable that does not appear in E.  is a tail-form expression that sends 

the value of E to k, so  will be a tail-form expression that, given a continuation, sends the 
value of E to that continuation, as desired.

2. The transformation rule for procedures is

where k is a fresh variable. The transformed procedure takes an extra continuation argument, and 
its body is a tail-form expression that sends the value of E to the continuation k.



 

3. Any simple expression other than a procedure is transformed by applying the preceding rule to 
each procedure that occurs within it, including those that appear in letrec expressions.

Now all we need to do is to define . Overall this will be done by a case analysis on 
whether E and its subexpressions are simple. A subsidiary analysis is sometimes done on the form 
of K. There are five rules that define . We will state these rules as clearly as we can in 
prose; we make them more precise when we get to the implementation of the transformation in 
section 8.4. The algorithm  always terminates, because whenever  
recursively invokes the algorithm, the left-hand argument is smaller than E.

1. If the expression E is simple and the continuation K is a variable k, then

This rule is reasonable, because instead of returning the value of the expression E, it passes that 
value to k, as desired. For example,

In the first example, the value of x is returned to k. In the second example, the sum of x and y is 
computed and returned to k. In the last example, we are asked to return a procedure, so the 

procedure is transformed using  and returned to k. Of course, the last example isn't finished 
yet, because we have not yet written down enough rules to figure out what expression is denoted 

by .

2. If the expression E is simple and the continuation K is a proc expression, then applying Csimple-

var would lead to an expression in which the procedure is applied to an argument. In this case we 
use the rule



 

The let expression is equivalent to the expression that would have been generated by Csimple-var 
but is easier to read. For example,

which is in tail form. This rule will only be needed when processing expressions such as if or 
let.

3. It may be that E is non-simple, but has no non-simple subexpressions. In our language, the only 
way this can happen is when E is a procedure application (S0 . . . Sn), where each of the Si is 
simple. In that case, what should happen? S0 in the original program denoted a procedure of n 
arguments; in the transformed program it denotes a procedure of n+1 arguments that computes the 
same thing the old procedure did, but sends the result to the last argument. Hence we write

where as before  is obtained by performing the transformation  on each procedure that 
appears in Si. For example,

In the second example, fact was a 1-argument procedure in the original program, but is a 2-
argument procedure in the transformed program. Similarly, in the fourth example, the original g 
took a 1-argument procedure as its sole argument; in the transformed program g takes two 
arguments: a procedure and a continuation. Since the procedure passed to g will likewise be 
applied to an argument and a continuation, it must be transformed as well, even though its body 
happens to be in tail form. The fourth example completes the last example from the first rule.



 

4. It may be that one of the head positions of E is non-simple. For example, E might be * (n, 
(fact sub1(n))). In that case, we would like to evaluate the non-simple head expression, 
and send the result to a new continuation that performs the rest of the computation. Let E be (. . . 
H . . .), where H is a non-simple immediate subexpression of E in a head position. E need not be 
an application, but we show parentheses for readability. We can write this rule as

where v is a fresh variable. Why does this work? When

is evaluated, the value of H is sent to the procedure

whose bound variable is v and whose body is . This procedure computes the 
value of (. . . v . . .) in an environment where v is bound to the value of H, and sends the result to 
the continuation K. This is the same as computing the value of (. . . H . . .) and sending the result 
to K, as desired.

This may be clearer if we look at some examples.

The expression to be transformed computes the value of (f x) (let us call that value v) and 
returns the sum of v and the value of y. In the transformed expression, the transformed procedure 
f sends the value v to its continuation argument, proc(v)(k + (v,y)). Hence v is bound to 
v, so the sum of v and the value of y is sent to k, as desired.



 

Here is a nested procedure call:

The expression to be transformed computes the value of (g x) (let us call that value w). Then it 
computes the value of f applied to w (let us call that v), and returns the sum of v and the value of 
y. In the transformed expression, the procedure g sends the value w to its continuation argument, 
proc(w)(f w proc(v)(k +(v,y))), which binds the identifier w to w. Then the 
procedure f receives the value w, so it sends the value v to its continuation proc(v)(k +(v,
y)), which sends the sum of v and the value of y to k, as desired.

Below is an example of two procedure calls in operand position.

Here (f x) is the first non-simple expression in head position in +((f x), (g y)), and (g 
y) is the first non-simple expression in head position in +(v, (g y)). The original expression 
computed (f x) (let us call that value v) and (g y) (let us call that value w), and returned



 

the sum of v and w. If f and g have also been transformed, then the call to f in the transformed 
expression will send v to the continuation proc(v) (g y proc(w) (k +(v,w))), thus 
binding v to v. Similarly, the call to g will bind w to w, so the sum of v and w will be sent to k, as 
desired.

Next, we show an example with a procedure passed to g, so we transform that procedure as well.

Because the Chead rule is applicable to any expression that has a non-simple subexpression in head 
position, we can also consider let expressions:



 

Here we have taken the (f x) that appears in head position in the let and promoted it to be 
evaluated first, in a continuation that binds v to the resulting value and continues with the 
evaluation of the let. We will present the rule for transforming the let next.

5. Finally, E is non-simple, and contains some non-simple subexpressions, but all the head 
positions in E contain simple expressions. Since in our language, every position is either a head 
position or a tail position, it follows that E contains some non-simple subexpressions in tail 
position in E. Consulting figure 8.2, we see that E must be either an if, a let, or a letrec 
expression. In this case, we can move the continuation K into the tail position. These three rules 
are called Cif, Clet, and Cletrec:

In the rule for letrec, we transform each of the procedures, and then we transform the body in 
the given continuation K.

In the transformations for let and letrec, we bring the continuation K into the scope of the 
declarations. Therefore, if any variable declared in the expression happens to occur free in K, it 
must be renamed or otherwise rearranged in the expression so that it will not capture the variable 
in K. This is among the details we will deal with in section 8.4.



 

Figure 8.4 Transforming with procedural continuations

The rule Csimple-proc is often used when processing these expressions, as illustrated in figure 8.4.

Exercise 8.12 [ ] For each expression E, below, find the expression .

1. (p +(8,x) (q y)).

2. add1((f (g x y) +(u,v)))

3. add1((f (g x y) +(u,(h v))))

4. zero?(if a then (p x) else (p y))

5. zero?(if (f a) then (p x) else (p y))

6. let x = let y = 8 in (p y) in x

7. let x = if a then (p x) else (p y) in x

Exercise 8.13 [ ] Our transformation of + ((f x), (g y)) evaluated (f x) first. CPS-transform 
this expression so that it evaluates (g y) first by choosing (g y) first in rule Chead.



Exercise 8.14 [ ] Find the transformations of + ((f x), (g (h y))) corresponding to each 
possible order of evaluation.



 

Exercise 8.15 [ ] When an if expression such as if zero? (n) then 0 else (f sub1
(n)) appears inside a large expression, then the CPS-transformed expression will look like if zero? 
(n) then (K 0) else (f sub1(n) K) where K represents the continuation that abstracts the context 
of the large expression. This reveals a shortcoming of the CPS transformation. Since the program text of K 
appears in two places, the size of the transformed program can grow exponentially. Show how this may be 
avoided by binding a fresh variable to K.

Exercise 8.16 [ ] The rule Csimple-proc can be simplified further. We can tell by examining Chead, that in any 
continuation proc (v) T, v occurs only once in T. Furthermore, v never occurs inside any binding occurrence 
of a variable from the original program. Therefore the rule Csimple-proc could be replaced by

where the notation E1[E2/x] means expression E1 with every free occurrence of the variable x replaced by E2, 
being certain to avoid any unintended variable capture (exercise 2.11). How would the examples of Csimple-proc 
shown in this section change if this version of the rule were applied? Redo figure 8.4 using this version of the 
rule.

8.3 Examples of the CPS Transformation

We next work through a few examples, starting with the factorial function.



 



 

which, when applied to proc(val)val is what we had on page 307.

For our examples, we will be primarily concerned with the transformation of procedures defined 
in a letrec expression. So we will just look at the declaration part of the letrec and use the 

 notation for this purpose.

For our next example, we transform remove from section 1.2.2. Since we do not have symbols in 
our language, we will remove numbers instead. We assume we have cons, car, cdr, 
emptylist, null? and equal? from the earlier exercises 3.7 and 3.11. In our defined 
language, this becomes

letrec  remove(n, lon) =    if null?
(lon)    then emptylist    else if equal?(s,car
(lon))         then (remove n cdr(lon))         else cons(car(lon),
(remove n cdr(lon)))in ...

which we transform as follows:



 



 

and we are done.

Finally, we transform subst (with number?) from section 1.2.2.



 



 



 

which is in tail form, as desired.

Exercise 8.17 [ ] In this example, we chose to evaluate the two operands to cons in left-to-right order. 
Transform this example to CPS again, evaluating the two operands to cons from right to left.

Exercise 8.18 [ ] For each of the definitions in this exercise, do the following: first, test the definition with 
the procedure tail-form? of exercise 8.10. Include a sample call to the procedure as the body of the 
letrec. Then transform the definition to continuation-passing style using the rules of this section. Verify 
that the transformed definition is in tail form by using tail-form?. Then test the transformed definition 
using the continuation proc(val)val. Be sure that the original and transformed versions give the same 
answer on each input.

1. removeall.

  letrec    removeall(n, s) =      if null?
(s)      then emptylist      else if number?(car
(s))           then if equal?(n,car
(s))                then (removeall n cdr(s))                else cons(car
(s),                          (removeall n cdr(s)))           else cons
((removeall n car(s)),                     (removeall n cdr(s)))



 

2. occurs-in?.

  letrec    occurs-in?(n, s) =      if null?
(s)      then 0      else if number?(car(s))           then if equal?(n,car
(s))                then 1                else (occurs-in? n cdr
(s))           else if (occurs-in? n car
(s))                then 1                else (occurs-in? n cdr(s))

3. remfirst. This uses occurs-in? from the preceding example.

  letrec    remfirst(n, s) =      letrec        loop(s) =          if null?
(s)          then emptylist          else if number?(car
(s))               then if equal?(n,car(s))                    then cdr
(s)                    else cons(car(s),(loop cdr
(s)))               else if (occurs-in? n car
(s))                    then cons((remfirst n car
(s)),                              cdr(s))                    else cons(car
(s),                              (remfirst n cdr(s)))      in (loop s)

4. depth.

  letrec    depth(s) =      if null?(s)      then 1      else if number?
(car(s))           then (depth cdr(s))           else if less?(add1
((depth car(s))),                         (depth cdr
(s)))                then (depth cdr(s))                else add1
((depth car(s)))



 

5. depth-with-let.

  letrec    depth(s) =      if null?(s)      then 1      else if number?
(car(s))           then (depth cdr(s))           else let dfirst = add1
((depth car(s)))                    drest  = add1((depth cdr
(s)))                in if less?
(dfirst, drest)                   then drest                   else dfirst

Exercise 8.19 [ ] Transform the following procedures into CPS.

1. map.

  letrec    map(f, l) =      if null?(l)      then emptylist      else cons
((f car(l)),                (map f cdr(l)))    square(n) = *(n,
n)  in (map square list(1,2,3,4,5))

2. fnlrgtn. This procedure takes a list of numbers lon and a number n and returns the first 
number in the list (in left-to-right order) that is greater than n. Once the result is found, no further 
elements in the list are examined. For example,

> (fnlrgtn list(1,list(3,list(2),7,list(9)))6)

finds 7.

3. addgtn. This procedure takes a list of numbers and a number n as arguments. It returns the 
sum of all numbers in the list that are greater than n.

  letrec    addgtn(l,n) =      if null?
(l)      then 0      else if greater?(car(l), n)           then +(car(l),
(addgtn cdr(l) n))           else (addgtn cdr(l) n)  in (addgtn list
(1,5,10,50) 5)



 

4. every. This procedure takes a predicate and a list and returns a true value if and only if the 
predicate holds for each list element.

  letrec    every(pred, l) =      if null?
(l)      then 1      else if (pred car(l))           then (every pred cdr
(l))           else 0  in (every proc(n)greater?(n,5) list(6,7,8,9))

8.4 Implementing the CPS Transformation

Our next task is to implement the transformation described in section 8.2. We will have three main 
procedures, one for each of the main operations in the transformation: cps-of-program 

, cps-of-simple-exp , and cps-of-expression .

The procedure cps-of-simple-exp, shown in figure 8.5, takes a simple expression. If the 
argument is a proc expression, then cps-of-simple-exp returns another proc expression 
with an additional continuation formal parameter and with a body transformed by cps-of-
expression. If the argument is not a proc expression, then cps-of-simple-exp creates 
an expression like the original, but in which every proc expression contained in the original is 
similarly transformed. Procedures declared in a letrec are also transformed in this way, as 
described in section 8.2.

The definitions of cps-of-program and cps-of-expression are presented in figure 8.6. 
The procedure cps-of-program takes a program and builds a proc expression with a 
continuation formal parameter and a body that contains the transformed expression, as described 
in section 8.2.

The procedure cps-of-expression implements the rules of section 8.2. It first tests to see 
whether the expression is simple; if so, then it calls the procedure csimple, which applies either 
Csimple-var or Csimple-proc. Otherwise, it sends the information to an auxiliary procedure that performs 
the rest of the transformation. In the letrec and the let clauses, we make a test to determine if 
the continuation is a variable and invoke the appropriate auxiliary procedure. If the continuation is 
not a variable, then it is a proc-exp, and it may therefore contain variables that may be captured 
by the let or letrec, as on page 315. We defer the discussion of this capturing case until 
later.

The variable k-id is bound to a fresh identifier that we use as our bound variable for 
continuations throughout the transformed program. We use



 

(define cps-of-simple-exp  (lambda (exp)    (cases expression exp      (proc-
exp (ids body)        (proc-exp          (append ids (list k-id))          (cps-
of-expression body k-var-exp)))      (lit-exp (datum) (lit-exp datum))      (var-
exp (id) (var-exp id))      (primapp-exp (prim rands)        (primapp-
exp prim (map cps-of-simple-exp rands)))      (if-exp (test-exp true-exp false-
exp)        (if-exp          (cps-of-simple-exp test-exp)          (cps-of-
simple-exp true-exp)          (cps-of-simple-exp false-exp)))      (let-
exp (ids rands body)        (let-exp ids          (map cps-of-simple-
exp rands)          (cps-of-simple-exp body)))      (letrec-exp (proc-
names idss bodies letrec-body)        (letrec-exp proc-
names          (map            (lambda (ids)              (append ids (list k-
id)))            idss)          (map            (lambda (body)              (cps-
of-expression body k-var-exp))            bodies)          (cps-of-simple-
exp letrec-body)))      (app-exp (rator rands)        (eopl:error 'cps-of-simple-
exp          "Can't call on application ~s" exp))      )))

Figure 8.5 cps-of-simple-exp



 

k-var-exp to denote an expression containing the identifier k-id. We generate k-id and 
other new identifiers using gensymbol, which takes an argument that becomes the beginning of 
the resulting unique name. We use var-exp? to test whether an expression is a variable. See 
figure 8.7.

Now we describe each of the auxiliary procedures in turn, in increasing order of difficulty. Each 
auxiliary procedure finds the non-simple subexpressions, if any, of the expression, and applies the 
appropriate rule: either Capp, Chead, or one of Cif, Clet, or Cletrec.

Let us first consider if expressions. The Capp rule is not applicable, so the only two possible rules 
are Chead and Cif. Chead applies if there is a non-simple subexpression in head position. For an if-
expression, the only head position is the test. So if the test expression is non-simple, then the 
transformation should be:

If the test expression is simple, then the transformation is given by Cif

We can code this transformation as follows:

(define cps-of-if-exp  (lambda (test-exp true-exp false-exp k)    (if (non-
simple? test-exp)      (let ((v-id (gensymbol "v")))        (cps-of-
expression test-exp          (proc-exp (list v-id)            (cps-of-
expression              (if-exp (var-exp v-id) true-exp false-
exp)              k))))      (if-exp (cps-of-simple-exp test-
exp)        (cps-of-expression true-exp k)        (cps-of-expression false-
exp k)))))

Let us next consider non-simple primitive applications. A primitive application p (E1, . . ., En) is 
non-simple if and only if at least one of E1, . . ., En is non-simple. Therefore the expression must 
be of the form p (S1, . . ., Si−1, Ei, Ei+1, . . ., En,), where Ei is the first non-simple subexpression. We 
therefore apply the Chead rule to get



 

(define k-id (gensymbol "k"))(define k-var-exp (var-exp k-id))(define cps-
of-program  (lambda (pgm)    (cases program pgm      (a-
program (exp)        (proc-exp (list k-id)          (cps-of-
expression exp k-var-exp))))))(define cps-of-
expression  (lambda (exp k)    (if (non-
simple? exp)      (cases expression exp        (if-exp (test-exp true-
exp false-exp)          (cps-of-if-exp test-exp true-exp false-
exp k))        (primapp-exp (prim rands)          (cps-of-primapp-
exp prim rands k))        (app-exp (rator rands)          (cps-of-app-
exp rator rands k))        (letrec-exp (proc-names idss bodies letrec-
body)          (cps-of-letrec-exp            proc-names idss bodies letrec-
body k))        (let-exp (ids rands body)          (cps-of-let-
exp ids rands body k))        (else          (eopl:error 'cps-of-
expression            "Can't call on ~s" exp)))      (csimple exp k))))
(define csimple  (lambda (exp k)    (cases expression k      (proc-
exp (ids body)        (let-exp ids (list (cps-of-simple-
exp exp)) body))      (else (app-exp k (list (cps-of-simple-exp exp)))))))

Figure 8.6 cps-of-program and cps-of-expression



 

(define gensymbol  (let ((n 0))    (lambda (s)      (set! n (+ n 1))      (let ((s (if (string? s) s (symbol-
>string s))))        (string->symbol          (string-append s (number->string n)))))))(define var-
exp?  (lambda (x)    (cases expression x      (var-exp (id) #t)      (else #f))))

Figure 8.7 Auxiliaries for generating identifiers and variables

This transformation can be implemented by the following code:

(define cps-of-primapp-exp  (lambda (prim rands k)    (let ((pos (list-index non-simple? rands))          (v-
id (gensymbol "v")))      (cps-of-expression (list-ref rands pos)        (proc-exp (list v-id)          (cps-
of-expression            (primapp-exp prim              (list-set rands pos (var-exp v-
id)))            k))))))

Here we use two procedures that were defined in section 2.3.2. The procedure (list-index pred lst) returns the zero-based index 
of the first element of lst that satisfies the predicate pred. Since the primitive application is known to be non-simple, this is guaranteed 
to succeed. The new call to p is built with list-set. The procedure (list-set lst n x) returns a list like lst, except that the nth 
element, using zero-based indexing, is x.

We next consider procedure applications. For a procedure application, we need to decide whether the rule Capp or the rule Chead applies. If 
both the rator and all of the rands are simple, then Capp applies:



 

If there is a non-simple subexpression, then we need to use Chead:

Although this notation treats operators and operands uniformly, our abstract syntax trees treat 
them separately. We therefore begin the implementation of these rules by testing to see if the 
operator is non-simple. If it is, then it will be the expression selected for evaluation by Chead:

(define cps-of-app-exp  (lambda (rator rands k)    (if (non-
simple? rator)      (let ((v-id (gensymbol "v")))        (cps-of-
expression rator          (proc-exp (list v-id)            (cps-of-
expression              (app-exp (var-exp v-
id) rands)              k))))      (cps-of-app-exp-simple-
rator rator rands k))))(define cps-of-app-exp-simple-
rator  (lambda (rator rands k)    (let ((pos (list-index non-
simple? rands)))      (if (number? pos)        (let ((v-
id (gensymbol "v")))          (cps-of-expression            (list-
ref rands pos)            (proc-exp (list v-id)              (cps-of-
expression                (app-exp rator                  (list-
set rands pos (var-exp v-id)))                k))))        (app-exp (cps-
of-simple-exp rator)          (append            (map cps-of-simple-
exp rands)            (list k)))))))

For a simple operator, we use list-index to find the position of a non-simple operand. If there 
is one, we apply Chead much as we did for primitive applications. Otherwise, we apply the Capp 
rule.



 

The next case is letrec. The only rule that applies to a non-simple letrec expression is Cletrec:

As mentioned on page 315, however, this can cause variables in K to be captured if they are 
declared in the letrec. For example, consider

Now the reference to fact in the continuation will be captured by the definition of fact in the 
letrec, when it originally referred to some other binding. We can avoid this difficulty by using 
the rule

when K is not a variable. (Here k is the initial continuation variable bound to k-id). This reduces 
the problem of transforming the letrec to the case in which the continuation is a variable, when 
no capture is possible.



 

(define cps-of-letrec-exp  (lambda (proc-names idss bodies letrec-
body k)    (if (var-exp? k)      (letrec-exp        proc-
names        (map          (lambda (ids)            (append ids (list k-
id)))          idss)        (map          (lambda (body)            (cps-
of-expression body k-var-exp))          bodies)        (cps-of-
expression letrec-body k))      (cbindk        (letrec-exp proc-
names idss bodies letrec-body)        k))))
(define cbindk  (lambda (exp k)    (let-exp (list k-id) (list k)      (cps-
of-expression exp k-var-exp))))

For our example above, we then get

and the call to fact in the continuation is safely out of the scope of the letrec declarations.



 

This leaves let expressions. For a non-simple let expression, there are two possibilities: if all 
of the right-hand sides are simple, then Clet applies:

In this case, we need to worry about variables in K being captured by the let variables, so we 
once again use Cbindk to avoid capturing whenever K is not a variable. The other possibility is that 
there is a non-simple right-hand side in the declarations; in that case we use Chead, which becomes

The procedure cps-of-let-exp applies this Chead rule repeatedly until it is no longer 
applicable. Then it applies the Clet rule.

(define cps-of-let-exp  (lambda (ids rands body k)    (if (var-
exp? k)      (let ((pos (list-index non-
simple? rands)))        (if (number? pos)          (let ((z-
id (gensymbol "z")))            (cps-of-expression              (list-
ref rands pos)              (proc-exp (list z-id)                (cps-of-
expression                  (let-exp ids                    (list-
set rands pos (var-exp z-
id))                    body)                  k))))          (let-
exp ids (map cps-of-simple-exp rands)            (cps-of-
expression body k))))      (cbindk (let-exp ids rands body) k))))

This completes the implementation of the CPS transformation. Go have a nice dinner.



 

Exercise 8.20 [ ] Implement and test this transformation. Make sure that the tests consider every case. Then 
have an even nicer dinner.

Exercise 8.21 [ ] Modify the transformer so that arguments to primitive applications and procedure 
applications are evaluated from right to left.

Exercise 8.22 [ ] The transformation of cps-of-if-exp copies the continuation k. This can cause an 
exponential increase in the size of the transformed program (see exercise 8.15). Modify the if clause of 
cps-of-expression to avoid this by first invoking the rule Cbindk when K is not a variable.

Exercise 8.23 [ ] Each occurrence of Cbindk dispatches through cps-of-expression to the same 
procedure from which it was called. Utilize this fact to avoid the calls to cps-of-expression in 
Cbindk.

Exercise 8.24 [ ] The code contains several occurrences of the call (cps-of-expression exp k-
var-exp). Abstract these into (cps-of-tail-pos exp), and rewrite the code to use this abstraction 
instead.

Exercise 8.25 [ ] Another way of avoiding variable capture in let and letrec is to rename any 
variables in the let or letrec declaration that would capture a free variable in the continuation 
expression. Modify the transformer to avoid capture in this way, rather than using Cbindk.

Exercise 8.26 [ ] The Chead rule on page 335 can often be rewritten by replacing z by vi, thereby removing 
the vi = z let declaration. This only works when vi is not free in S1, . . ., Si-1, Ei+1, . . ., En. When it is free, the 
let declaration can still be removed, but instead vi must be renamed to z and substituted for all free 
occurrences of vi in E. Redefine cps-of-let-exp to incorporate this approach.

Exercise 8.27 [ ] Modify the transformer to use Csimple-proc' as in exercise 8.16 instead of Csimple-proc.

Exercise 8.28 [ ] Our CPS algorithm is correct only if the program does not contain variables k0, 
k1, ..., v0, v1, ..., and z0, z1, .... If these variables appear in our program, then 
those created by gensymbol will not be fresh. To specify the algorithm correctly, we must use fresh-
id from exercise 2.10. The arguments to fresh-id include an expression, and fresh-id is 
guaranteed to return a symbol that does not occur in that expression.

Modify the transformer to replace every occurrence of gensymbol, k-id, or k-var-exp by an 
appropriate call to fresh-id.

Some Scheme systems include a procedure gensym, which generates a unique, never-used-before symbol. 
How could gensym be used instead of fresh-id to correct our algorithm? Would that be more efficient 
than using fresh-id? Explain.

Exercise 8.29 [ ] As written, this algorithm requires O(n2) time, because it potentially calls non-
simple? O(n) times, and each call to non-simple? requires O(n) time. Rewrite the algorithm to 
avoid this by using two passes: one to annotate each node of the abstract-syntax tree to indicate whether or not 
it contains a simple expression, and then a second pass to perform the transformation.



 

Exercise 8.30 [ ] Modify the algorithm of this section to handle the typed language of section 4.2. It 
should take a typed expression and produce another type expressions. Consider the following questions: if an 
expression is of type int, what type of continuation should it take? What should the type of the transformed 
expression be? Next, consider a proc expression. If it is of type (int -> int), what should the type 
of the transformed expression be? What if it were of type ((int -> int) -> int)?

Exercise 8.31 [ ] Here is an implementation of a different CPS algorithm that builds from exercise 8.23 
and exercise 8.24. First, use this definition of cps-of-tail-pos:

(define cps-of-tail-pos  (lambda (exp)    (cps-of-
expression exp      (lambda (res)        (app-exp k-var-exp (list res))))))

Instead of passing k-var-exp to cps-of-expression, we pass in a procedure that will 
create the application of k-var-exp.

We change csimple to acknowledge that k is indeed a procedure and not a proc-exp. Moreover, 
since k is a procedure, we can no longer create a let-exp as we did for Csimple-proc.

(define csimple  (lambda (exp k)    (k (cps-of-simple-exp exp))))

What remains is to implement each of the auxiliary procedures. Two of them, cps-of-app-exp and 
cps-of-let-exp are presented in figure 8.8.

The procedure cps-of-rands is like eval-rands on page 263, but it does not take an environment 
and the call to eval-expression is replaced by a call to cps-of-expression.

First, implement and test this algorithm. Next, add cps-of-primapp-exp, cps-of-if-exp, 
and cps-of-letrec-exp. Finally, apply the ideas for making more readable outputs as described in 
exercises 8.25–8.28.

The algorithm as described often generates continuations of the form proc(v) (k v). Modify the 
algorithm to generate k instead.

By restricting the definition of simple to include only literal, variable, and procedure expressions, this CPS 
transformer becomes a one-pass algorithm. Revise our implementation so that it, too, becomes a one-pass 
algorithm. In what fundamental ways do these two one-pass algorithms differ?



 

(define cps-of-app-exp  (lambda (rator rands k)    (let ((cont-
exp            (let ((v-id (gensymbol "v")))              (proc-
exp (list v-id)                (k (var-exp v-id))))))      (cps-of-
expression rator        (lambda (rator-res)          (cps-of-
rands rands            (lambda (rands-res)              (app-exp rator-
res                (append rands-res                  (list cont-
exp))))))))))(define cps-of-let-
exp  (lambda (ids rands body k)    (let ((cont-exp            (let ((v-
id (gensymbol "v")))              (proc-exp (list v-
id)                (k (var-exp v-id))))))      (let ((exp (cps-of-
rands rands                   (lambda (rands-res)                     (let-
exp ids rands-res                       (cps-of-tail-
pos body))))))        (if (var-exp? cont-
exp)          exp          (cbindk exp cont-exp))))))

Figure 8.8 Two auxiliaries for exercise 8.31

8.5 Modeling computational effects

Another important use of CPS is to provide a model in which computational effects can be made 
explicit. A computational effect is an effect like printing or assigning to a variable, which is 
difficult to model using equational reasoning. By transforming to CPS, we can make these effects 
explicit in a way that allows us to use equational reasoning even on programs that have such 
effects. In this section, we will study three effects: printing, variable assignment, and non-local 
control flow.



 

Let us first consider printing. In our defined language, printing would ordinarily be considered a 
primitive that printed the value of its operand and returned 1. (See exercise 3.5.) It has a 
computational effect, however, so (f print(3) print(4)) and (f 1 1) have different 
effects, even though they return the same answer. The effect also depends on the order of 
evaluation of arguments; up to now our languages have always evaluated their arguments from left 
to right, but other languages might not do so. We can model these considerations by modifying 
our CPS transformation in the following ways:

• We modify the definition of a simple expression so that print (e) is never simple. Here e is in 
head position.

• If the operand of print is simple, the rule is

where printc is a new expression like print, except that it takes two arguments, which are 
expected to be a value and a continuation. The printc expression prints the value and then sends 
1 to the continuation.

• If the operand of print is not simple, we use Chead to transform it:

Thus  is

(g x  proc(v4)    printc(v4,      proc(v2)        printc(4,          proc
(v3)            (f v2 v3 k))))

Here, having received the continuation k, we call g in a continuation that calls the result v4. The 
continuation prints the value of v4 and sends 1 to the next continuation, which binds v2 to its 
argument 1, prints 4 and then calls the next continuation, which binds v3 to its argument 1 and 
then calls f with 1, 1, and k. In this way the sequencing of the different printing actions becomes 
explicit.

Now the CPS transformation is from a source language (the one with print) to a slightly 
different target language (the one with printc). Figure 8.9 shows the code to implement this 
transformation.



 

(define cps-of-expression  (lambda (exp k)    (if (non-
simple? exp)      (cases expression exp        (print-exp (exp) (cps-of-
print-exp exp k))        ...)      (csimple exp k))))(define cps-of-print-
exp  (lambda (exp k)    (if (non-simple? exp)      (let ((v-
id (gensymbol "v")))        (cps-of-expression          exp          (proc-
exp (list v-id)            (printc-exp (var-exp v-id) k))))      (printc-
exp (cps-of-simple-exp exp) k))))

Figure 8.9 CPS transformation for print

We next consider variable assignment. To do variable assignment, we need to make two effects 
explicit: assignment to variables and dereferencing of variables. Therefore we will add a target-
language expression for each of these. We can describe the transformation of set (figure 8.10) 
much as we did the transformation of print.

• A set expression is never simple, and its right-hand-side expression is in head position.

• If the right-hand-side expression of set is simple, the rule is

where the expression setc x e K evaluates the expression e, stores the result in the reference to 
which variable x is bound, and then sends 1 (the value of the analogous set) to the continuation K.

• If the right-hand-side expression of set is not simple, we use Chead to transform it and then 
assign the result using setc:



 

• Since evaluation of a variable involves a dereference, a variable from the source language is no 
longer simple. Since a generated variable (one created by gensymbol) is never mutated, we can 
treat it as an unsettable variable, not a source language (reference) variable. Therefore a generated 
variable is simple. Since we must distinguish these two cases, we add genvar-exp as a new 
variant of expression and define genvar-exp?. At every place in the transformation where 
we had previously applied var-exp to a generated variable, we use genvar-exp instead. 
Furthermore, since k-id is a generated variable, everywhere we used var-exp? to test to see 
whether a continuation was a variable, we now use genvar-exp? instead. See figure 8.10.

• We transform source, but not generated, variables as

where the expression derefc x K retrieves the binding of the identifier x and sends its contents to 
the continuation K.

Hence  is

derefc x  proc(v9)    let v8 = add1(v9)    in setc x v8 k

First, x is dereferenced and v9 is bound to the result. Then add1 is applied to v9, and v8 is 
bound to the result. Last, the value of v8 is assigned to the reference to which x is bound, and the 
continuation k is invoked.

Here is a subtler example:  is

derefc f  proc(v2)    derefc x      proc(v7)        let v6 = add1
(v7)        in setc x = v6             proc
(v3)               derefc x                 proc
(v5)                   let v4 = +(2,v5)                   in (v2 v3 v4 k)



 

Figure 8.10 CPS transformation for variable assignment



 

The code shows the sequence of dereference and assignment operations: first f is dereferenced, 
yielding v2, and x is dereferenced twice: once before the setc (yielding v7) and once afterwards 
(yielding v5).

As a last example, we consider letcc from exercise 7.31. A letcc expression letcc 
<identifier> in <expression> binds the current continuation to the variable <identifier>. The only 
operation on continuations is throw. We use throw <expression> to <expression>, which 
evaluates the two subexpressions. The second expression should return a continuation, which is 
applied to the value of the first expression. The current continuation of the throw expression is 
ignored.

We first analyze these expressions according to the paradigm of this chapter. These expressions 
are never simple. The expression part of a letcc is a tail position, since its value is the value of 
the entire expression. Since both positions in a throw are evaluated, and neither is the value of 
the throw (indeed, the throw has no value, since it never returns to its immediate continuation), 
they are both head positions.

We can now write down the rules for converting these two expressions. For letcc, the rule is

For throw, the rule is

and K is ignored, as desired. If either of the operands of throw are non-simple, than Chead should 
be applied.

Exercise 8.32 [ ] Implement these transformations.

Exercise 8.33 [ ] If a variable never appears on the left-hand side of a set expression, then it is 
immutable, and could be treated as simple. Revise the implementation so that all such variables are treated as 
simple.

Exercise 8.34 [ ] Add an expression begin E1 E2 to the language of this chapter.

Exercise 8.35 [ ] Extend the previous exercise to include begin expressions with more than one 
subexpression.

Exercise 8.36 [ ] Extend exercise 8.31 to include letcc expressions.



 

Further Reading

Steele's RABBIT compiler (1978) uses CPS conversion as the basis for a compiler. In this 
compiler, the source program is converted into CPS and then into iterative form, which can be 
compiled easily. This line of development led to the ORBIT compiler in (Kranz, Kelsey, Rees, 
Hudak, Philbin, & Adams, 1986) and to the Standard ML of New Jersey compiler (Appel & Jim, 
1989).

(Plotkin, 1975) gives a very clean version of the CPS transformation and presents its theoretical 
properties. A very similar version of the transformation is given in (Fischer, 1972; 1999); a more 
complex version with some interesting theoretical properties is given in (Danvy & Filinski, 1992). 
The CPS algorithm in chapter 8 is taken from (Sabry & Wadler, 1997), which improved on (Sabry 
& Felleisen, 1993), which in turn was motivated by the CPS algorithm of chapter 8 of the first 
edition of this book.



 

A The SLLGEN Parsing System

Programs are just strings of characters. In order to process a program, we need to group these 
characters into meaningful units. This grouping is usually divided into two stages: scanning and 
parsing.

Scanning is the process of dividing the sequence of characters into words, punctuation, etc. These 
units are called lexical items, lexemes, or most often tokens. Parsing is the process of organizing 
the sequence of tokens into hierarchical syntactic structures such as expressions, statements, and 
blocks. This is much like organizing a sentence into clauses.

SLLGEN is a package for generating scanners and parsers in Scheme. In this appendix, we first 
review the basics of scanning and parsing, and then consider how these capabilities are expressed 
in SLLGEN.

Scanning

The problem of scanning is illustrated in figure A.1. The figure shows a small segment of a 
program, and the way in which it is intended to be broken up into atomic units.

The way in which a given stream of characters is to be broken up into lexical items is part of the 
language specification. This part of the language specification is sometimes called the lexical 
specification. Typical pieces of lexical specification might be:

• Any sequence of spaces and newlines is equivalent to a single space.

• A comment begins with % and continues until the end of the line.

• An identifier is a sequence of letters and digits starting with a letter.



 

Figure A.1 The task of the scanner

The job of the scanner is to go through the input and analyze it to produce data structures with 
these items. In a conventional language, the scanner might be a procedure that, when called, 
produces the "next" token of the input.

One could write a scanner from scratch, but that would be tedious and error-prone. A better 
approach is to write down the lexical specification in a specialized language. The most common 
language for this task is the language of regular expressions. We define the language of regular 
expressions as follows:

Each regular expression matches some strings. We can use induction to define the set of strings 
matched by each regular expression:

• A character c matches the string consisting of the character c.

• ¬c matches any 1-character string other than c.

• RS matches any string that consists of a string matching R followed by a string matching S. This 
is called concatenation.

• R ∪ S matches any string that either matches R or matches S. This is sometimes written R | S, and 
is sometimes called alternation.



 

• R* matches any string that is formed by concatenating some number n (n ≥ 0) of strings that 
match R. This is called the Kleene closure of R.

Some examples may be helpful:

• ab matches only the string ab.

• ab ∪ cd matches the strings ab and cd.

• (ab ∪ cd)(ab ∪ cd ∪ ef) matches the strings abab, abcd, abef, cdab, cdcd, and 
cdef.

• (ab)* matches the empty string, ab, abab, ababab, abababab, . . . .

• (ab ∪ cd)* matches the empty string, ab, cd, abab, abcd, cdab, cdcd, 
ababab, ... cdcdcd, . . . .

The specifications for our example may be written using regular expressions as

When scanners use regular expressions to specify a token, the rule is always to take the longest 
match. This way xyz will be scanned as one identifier, not three.

When the scanner finds a token, it returns a data structure consisting of at least the following 
pieces of data:

• A class, which describes what kind of token it has found. The set of classes is part of the lexical 
specification. SLLGEN uses Scheme symbols to distinguish these classes; other syntactic 
analyzers might use other data structures.

• A piece of data describing the particular token. The nature of this data is also part of the lexical 
specification. For our system, the data is be as follows: for identifiers, the data is a Scheme symbol 
built from the string in the token; for a number, the datum is the number described by the number 
literal; and for a literal string, the datum is the string. String data are used for keywords and 
punctuation.In an implementation language that did not have symbols, one might use a string (the 
name of the identifier), or an entry into a hash table indexed by identifiers (a symbol table) instead. 
Using Scheme spares us these annoyances.



 

• Some data describing the location of this token in the input. This information may be used by the 
parser to help the programmer identify the location of syntactic errors.

In general, the internal structure of tokens is relevant only to the scanner and the parser, so we 
shall not describe it in any further detail.

Parsing

Parsing is the process of organizing the sequence of tokens into hierarchical syntactic structures 
such as expressions, statements, and blocks. This is like organizing or diagramming a sentence 
into clauses. The syntactic structure of a language is typically specified using a BNF definition, 
also called a context-free grammar (section 1.1.2).

The parser takes as input a sequence of tokens, and its output is an abstract syntax tree (section 
2.2.2). The abstract syntax trees produced by an SLLGEN parser can be described by define-
datatype. For a given grammar, there will be one data type for each nonterminal. For each 
nonterminal, there will be one variant for each production that has the nonterminal as its left-hand 
side. Each variant will have one field for each nonterminal, identifier, or number that appears in its 
right-hand side. A simple example appears in section 2.2.2. To see what happens when there is 
more than one nonterminal in the grammar, consider a grammar like the one in section 3.9:

The trees produced by this grammar could be described by this data type

(define-datatype statement statement?  (compound-
statement    (stmt1 statement?)    (stmt2 statement?))  (while-
statement    (test expression?)    (body statement?))  (assign-
statement    (lhs symbol?)    (rhs expression?)))



 

(define-datatype expression expression?  (var-exp    (id symbol?))  (sum-
exp    (exp1 expression?)    (exp2 expression?)))

For each nonterminal in a right-hand side, the corresponding tree appears as a field; for each identifier, the corresponding 
symbol appears as a field. The names of the variants will be specified in the grammar when it is written in SLLGEN. The 
names of the fields will be automatically generated; here we have introduced some mnemonic names for the fields. For 
example, the input

x := foo; while x do x := (x + bar)

produces the output

(compound-statement  (assign-statement x (var-exp foo))  (while-statement (var-exp x)    (assign-
statement x      (sum-expression (var-exp x) (var-exp bar)))))

Throughout this appendix, abstract syntax trees are displayed as lists.

Scanners and Parsers in SLLGEN

Specifying Scanners

In SLLGEN, scanners are specified by regular expressions. Our example would be written in SLLGEN as follows:

(define scanner-spec-a  '((white-sp      (whitespace)                       skip)    (comment      ("%" (arbno (not #
\newline)))      skip)    (identifier      (letter (arbno (or letter digit))) symbol)    (number      (digit (arbno digit))              number)))



 

If the scanner is used with a parser that has keywords or punctuation, like while or =, it is not 
necessary to put these in the scanner manually; the parser-generator will add those automatically.

A scanner specification in SLLGEN is a list that satisfies this grammar:

Each item in the list is a specification of a regular expression, consisting of a name, a sequence of 
regular expressions, and an action to be taken on success. The name is a Scheme symbol that will 
become the class of the token.

The second part of the specification is a sequence of regular expressions, because the top level of a 
<regexp> in a scanner is almost always a concatenation. A regular expression may be a Scheme 
string; one of four predefined testers: letter (matches any letter), digit (matches any digit), 
whitespace (matches any Scheme whitespace character), and any (matches any character); the 
negation of a character; or it may be a combination of regular expressions, using a Scheme-like 
syntax with or and concat for union and concatenation, and arbno for Kleene star.

As the scanner works, it collects characters into a buffer. When the scanner determines that it has 
found the longest possible match of all the regular expressions in the specification, it executes the 
outcome of the corresponding regular expression.

An outcome can be one of the following:

• The symbol skip. This means this is the end of a token, but no token is emitted. The scanner 
continues working on the string to find the next token. This action is used for whitespace and 
comments.

• The symbol symbol. The characters in the buffer are converted into a Scheme symbol and a 
token is emitted, with the class name as its class and with the symbol as its datum.

• The symbol number. The characters in the buffer are converted into a Scheme number, and a 
token is emitted, with the class name as its class and with the number as its datum.



 

• The symbol string. The characters in the buffer are converted into a Scheme string, and a token 
is emitted, with the class name as its class and with that string as its datum.

If there is a tie for longest match between two regular expressions, string takes precedence over 
symbol. This rule means that keywords that would otherwise be identifiers are treated as 
keywords.

Specifying Grammars.

SLLGEN also includes a language for specifying grammars. The simple grammar above would be 
written in SLLGEN as

(define grammar-
a1  '((statement      ("" statement ";" statement "")      compound-
statement)    (statement      ("while" expression "do" statement)      while-
statement)    (statement      (identifier ":=" expression)      assign-
statement)    (expression      (identifier)      var-
exp)    (expression      ("(" expression "+" expression ")")      sum-exp)))

A grammar in SLLGEN is a list described by the following grammar:

A grammar is a list of productions. The left-hand side of the first production is the start symbol for 
the grammar. Each production consists of a left-hand side (a nonterminal symbol), a right-hand side 
(a list of <rhs-item>'s) and a production name. The right-hand side of a production is a list of 
symbols or strings. The symbols are nonterminals; strings are literal strings. A



 

(define scanner-spec-1 . . .)(define grammar-1 . . .)(sllgen:make-define-
datatypes scanner-spec-1 grammar-1)(define list-the-
datatypes  (lambda ()    (sllgen:list-define-datatypes scanner-spec-
1 grammar-1)))(define just-scan  (sllgen:make-string-scanner scanner-spec-
1 grammar-1))(define scan&parse  (sllgen:make-string-parser scanner-spec-
1 grammar-1))(define read-eval-print  (sllgen:make-rep-loop "--> " eval-
program    (sllgen:make-stream-parser scanner-spec-1 grammar-1)))

Figure A.2 Using SLLGEN

right-hand side may also include arbno's or separated-list's; these are discussed below. 
The production name is a symbol, which becomes the name of the define-datatype variant 
corresponding to the production.

In SLLGEN, the grammar must allow the parser to determine which production to use knowing 
only (1) what nonterminal it's looking for and (2) the first symbol (token) of the string being 
parsed. Grammars in this form are called LL(1) grammars; SLLGEN stands for Scheme LL(1) 
parser GENerator. This is somewhat restrictive in practice, but it is good enough for the purposes 
of this book. SLLGEN produces a warning if the input grammar fails to meet this restriction.

SLLGEN operations

SLLGEN includes several procedures for incorporating these scanners and grammars into an 
executable parser. Figure A.2 shows a sample use of SLLGEN to define a scanner and parser for a 
language.



 

The procedure sllgen:make-define-datatypes generates each of the define-
datatype expressions from the grammar for use by cases. The procedure sllgen:list-
define-datatypes generates the define-datatype expressions again, but returns them 
as a list rather than executing them. The field names generated by these procedures are 
uninformative because the information is not in the grammar; to get better field names, write out 
the define-datatype.

The procedure sllgen:make-string-scanner takes a scanner and a grammar and 
generates a scanning procedure. The resulting procedure may be applied to a string and produces a 
list of tokens. The grammar is used to add keywords to the resulting scanning procedure. This 
procedure is useful primarily for debugging.

The procedure sllgen:make-string-parser generates a parser. The parser is a procedure 
that takes a string, scans it according to the scanner, parses it according to the grammar, and 
returns an abstract syntax tree. As with sllgen:make-string-scanner, the literal strings 
from the grammar are included in the scanner.

SLLGEN can also be used to build a read-eval-print-loop (section 3.2). The procedure sllgen:
make-stream-parser is like the string version, except that its input is a stream of characters 
and its output is a stream of tokens. The procedure sllgen:make-rep-loop takes a string, a 
1-argument procedure, and a stream parser, and produces a read-eval-print loop that produces the 
string as a prompt on the standard output, reads characters from the standard input, parses them, 
prints the result of applying the procedure to the resulting abstract syntax tree, and recurs. For 
example:

> (define read-eval-print    (sllgen:make-rep-loop  "--> " eval-
program      (sllgen:make-stream-parser        scanner-spec-3-
1        grammar-3-1)))> (read-eval-print)--> 55--> add1(2)3--> +(add1
(2), - (6,4))5

The way in which control is returned from this loop to the Scheme read-eval-print loop is system-
dependent.



 

arbno's and separated-list's

An arbno is a Kleene star in the grammar: it matches an abitrary number of repetitions of its entry. For example, the 
production

could be written in SLLGEN as

(define grammar-a2  '((statement      ("{" (arbno statement ";") "}")      compound-
statement)    ...))

This makes a compound statement a sequence of an arbitrary number of semicolon-terminated statements.

This arbno generates a single field in the abstract syntax tree. This field will contain a list of the data for the 
nonterminal inside the arbno. Our example generates the following datatypes:

(define-datatype statement statement?  (compound-statement    (compound-statement32 (list-
of statement?)))  ...)

A simple interaction looks like:

> (define scan&parse2    (sllgen:make-string-parser scanner-spec-a grammar-a2))
> (scan&parse2 "x := foo; y := bar; z := uu;")(compound-statement  ((assign-
statement x (var-exp foo))   (assign-statement y (var-exp bar))   (assign-statement z (var-
exp uu))))

We can put a sequence of nonterminals inside an arbno. In this case, we will get several fields in the node, one for 
each nonterminal; each field will contain a list of syntax trees. For example:

(define grammar-a3  '((expression (identifier) var-
exp)    (expression      ("let" (arbno identifier "=" expression) "in" expression)      let-
exp)))



 

(define scan&parse3  (sllgen:make-string-parser scanner-spec-a grammar-a3))

This produces the datatype

(define-datatype expression expression?  (var-exp (var-
exp4 symbol?))  (let-exp    (let-exp9 (list-of symbol?))    (let-
exp7 (list-of expression?))    (let-exp8 expression?)))

Here is an example of this grammar in action:

> (scan&parse3 "let x = y u = v in z)")(let-exp  (x u)  ((var-exp y) (var-
exp v))  (var-exp z))

The specification (arbno identifier "=" expression) generates exactly two lists: a 
list of identifiers and a list of expressions. This is convenient because it will let our interpreters get 
at the pieces of the expression directly.

Sometimes it is helpful for the syntax of a language to use lists with separators, not terminators. 
This is common enough that it is a built-in operation in SLLGEN. We can write

(define grammar-a4  '((statement      ("{" (separated-
list statement ";") "}")      compound-statement)    ...))

This produces the datatype

(define-datatype statement statement?  (compound-statement    (compound-
statement103 (list-of statement?)))    ...)



 

Here is a sample interaction:

> (define scan&parse4    (sllgen:make-string-parser scanner-spec-a grammar-
a4))> (scan&parse4 "{ }")(compound-statement () )> (scan&parse4 "{x:= y; u :
= v ; z := t}")(compound-statement  ((assign-statement x (var-
exp y))   (assign-statement u (var-exp v))   (assign-statement z (var-
exp t))))> (scan&parse4 "{x:= y; u := v ; z := t ;}")
Error in parsing: at line 1Nonterminal <seplist3> can't begin with string "}"

In the last example, the input string had a terminating semicolon that did not match the grammar, so 
an error was reported.

As with arbno, we can place an arbitrary sequence of nonterminals within a separated-list. 
In this case, we will get several fields in the node, one for each nonterminal; each field will contain 
a list of syntax trees. This is exactly the same data as would be generated by arbno; only the 
concrete syntax differs.

We will occasionally use nested arbno's and separated-list's. A nonterminal inside an 
arbno generates a list, so a nonterminal inside an arbno inside an arbno generates a list of lists.

As an example, consider a compound-statement similar to the one in grammar-a4, except 
that we have parallel assignments:

(define grammar-a5  '((statement      ("{"        (separated-
list          (separated-list identifier ",")          ":
="          (separated-
list expression ",")          ";")        "}")      compound-
statement)    (expression (number) lit-exp)    (expression (identifier) var-
exp)    ))> (define scan&parse5    (sllgen:make-string-parser scanner-spec-
a grammar-a5))



 

This generates the following datatype for statement:

(define-datatype statement statement?  (compound-statement    (compound-
statement4 (list-of (list-of symbol?)))    (compound-statement3 (list-
of (list-of expression?)))))

A typical interaction looks like:

> (scan&parse5 "{ x,y := u,v ; z := 4; t1, t2 := 5, 6 }")(compound-
statement  ((x y) (z) (t1 t2))  (((var-exp u) (var-exp v))   ((lit-
exp 4))   ((lit-exp 5) (lit-exp 6))))

Here the compound-statement has two fields: a list of lists of identifiers, and the matching 
list of lists of expressions. In this example we have used separated-list instead of arbno, 
but an arbno would generate the same data.

Exercise A.1 [ ] The following grammar for ordinary arithmetic expressions builds in the usual precedence 
rules for arithmetic operators:

This grammar says that every arithmetic expression is the sum of a non-empty sequence of terms; every term is 
the product of a non-empty sequence of factors; and every factor is either a constant or a parenthesized 
expression.

Write a lexical specification and a grammar in SLLGEN that will scan and parse strings according 
to this grammar. Verify that this grammar handles precedence correctly, so that, for example 3
+2*66−5 gets grouped correctly, as 3 + (2 × 66) − 5.

Exercise A.2 [ ] Why can't the grammar above be written with separated-list?

Exercise A.3 [ ] Write an interpreter that takes the syntax tree produced by the parser of exercise A.1 and 
evaluates it as an arithmetic expression. The parser takes care of the usual arithmetic precedence operations, 
but the interpreter will have to take care of associativity, that is, making sure that operations at the same 
precedence level (e.g. additions and subtractions) are performed from left to right. Since there are no variables 
in these expressions, this interpreter need not take an environment parameter.



 

Exercise A.4 [ ] Extend the language and interpreter of the preceding exercise to include variables. This 
new interpreter will require an environment parameter.

Exercise A.5 [ ] Add unary minus to the language and interpreter, so that inputs like 3*-2 are handled 
correctly.



 

B For Further Reading

The most important books are those that change the way one looks at the world. So we will begin 
our reading list with two books in this category. The first is Structure and Interpretation of 
Computer Programs, by Hal Abelson and Gerry Sussman with Julie Sussman (1985; 1996). This 
is a challenging introduction to programming that emphasizes general problem-solving techniques 
and uses Scheme throughout. We often list this book as a required text in our courses, just because 
every computer scientist and programmer should read it. A second mind-expanding book is Gödel, 
Escher, Bach: An Eternal Golden Braid by Douglas R. Hofstadter (1979). If you have not read 
this book, take some time off and get acquainted with it. It is a joy to read and will open your mind 
to new and exciting ways to think about recursion, especially as it occurs in the real world, and the 
meaning of symbols. We hope our book has as deep an effect on you as these books did on us.

General Readings

Two conferences on the history of programming languages, HOPL I (Wexelblat, 1981) and HOPL 
II (Bergin & Gibson, 1996) provide useful histories of many languages. (Horowitz, 1983) 
anthologizes many classic papers on programming language design. (Knuth & Pardo, 1977) traces 
the earliest development of programming languages. Earlier important books include (Braffort & 
Hirschberg, 1963; Steel, 1966).

The major professional organizations in computing, the Association for Computing Machinery 
(ACM) and the IEEE Computer Society (IEEE-CS), are rich sources for learning more about 
programming languages. They sponsor several major conferences and publish several journals that 
cover this field. Some of the major conferences are the ACM Symposium on Prin-



 

ciples of Programming Languages (POPL), the ACM Symposium on Programming Language 
Design and Implementation (PLDI), the ACM International Conference on Functional 
Programming (ICFP), the ACM Conference on Object-Oriented Programming Systems, 
Languages, and Applications (OOPSLA), and the IEEE International Conference on Computer 
Languages (ICCL). In addition, new conferences are created almost every year. For details, see the 
listings that are published regularly in the Communications of the ACM and IEEE Computer.

Some of the journals that publish important papers in programming languages are ACM 
Transactions on Programming Languages and Systems, Journal of Functional Programming, 
Higher-Order and Symbolic Computation (previously entitled Lisp and Symbolic Computation), 
IEEE Software, Journal of Computer Languages, and Software: Practice and Experience.

We hope we have given you some useful directions. Enjoy!
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