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Foreword

This book brings you face-to-face with the most fundamental idea in computer programming:
The interpreter for a computer language is just another program.

It sounds obvious, doesn't it? But the implications are profound. If you are a computational
theorist, the interpreter idearecalls Godel's discovery of the limitations of formal logical systems,
Turing's concept of auniversal computer, and von Neumann's basic notion of the stored-program
machine. If you are a programmer, mastering the idea of an interpreter is a source of great power.
It provokes areal shift in mindset, a basic change in the way you think about programming.

| did alot of programming before | learned about interpreters, and | produced some substantial
programs. One of them, for example, was a large data-entry and information-retrieval system
written in PL/I. When | implemented my system, | viewed PL/I as afixed collection of rules
established by some unapproachable group of language designers. | saw my job as not to modify
these rules, or even to understand them deeply, but rather to pick through the (very) large manual,
selecting this or that feature to use. The notion that there was some underlying structure to the way
the language was organized, and that | might want to override some of the language designers
decisions, never occurred to me. | didn't know how to create embedded sublanguages to help
organize my implementation, so the entire program seemed like alarge, complex mosaic, where
each piece had to be carefully shaped and fitted into place, rather than a cluster of languages,
where the pieces could be flexibly combined. If you don't understand interpreters, you can still
write programs; you can even be a competent programmer. But you can't be a master.



There are three reasons why as a programmer you should learn about interpreters.

First, you will need at some point to implement interpreters, perhaps not interpreters for full-
blown general-purpose languages, but interpreters just the same. Almost every complex computer
system with which people interact in flexible ways—a computer drawing tool or an information-
retrieval system, for example—includes some sort of interpreter that structures the interaction.
These programs may include complex individual operations—shading aregion on the display
screen, or performing a database search—but the interpreter is the glue that lets you combine
individual operations into useful patterns. Can you use the result of one operation as the input to
another operation? Can you name a sequence of operations? Is the name local or global? Can you
parameterize a sequence of operations, and give names to its inputs? And so on. No matter how
complex and polished the individual operations are, it is often the quality of the glue that most
directly determines the power of the system. It's easy to find examples of programs with good
individual operations, but lousy glue; looking back on it, | can see that my PL/I database program
certainly had lousy glue.

Second, even programs that are not themselves interpreters have important interpreter-like pieces.
L ook inside a sophisticated computer-aided design system and you're likely to find a geometric
recognition language, a graphics interpreter, arule-based control interpreter, and an object-
oriented language interpreter all working together. One of the most powerful ways to structure a
complex program is as a collection of languages, each of which provides a different perspective, a
different way of working with the program elements. Choosing the right kind of language for the
right purpose, and understanding the implementation tradeoffs involved: that's what the study of
interpretersis about.

The third reason for learning about interpretersis that programming techniques that explicitly
involve the structure of language are becoming increasingly important. Today's concern with
designing and manipulating class hierarchies in object-oriented systemsis only one example of
this trend. Perhaps thisis an inevitable consequence of the fact that our programs are becoming
increasingly complex—thinking more explicitly about languages may be our best tool for dealing
with this complexity. Consider again the basic idea: the interpreter itself isjust a program. But that
program is written in some language, whose interpreter isitself just a program written in some
language whose interpreter isitself. . . . Perhaps the whole distinction between program and
programming language is a misleading idea, and



future programmers will see themselves not as writing programs in particular, but as creating new
languages for each new application.

Friedman, Wand, and Haynes have done alandmark job, and their book will change the landscape
of programming-language courses. They don't just tell you about interpreters; they show them to
you. The core of the book is atour de force sequence of interpreters starting with an abstract high-
level language and progressively making linguistic features explicit until we reach a state
machine. Y ou can actually run this code, study and modify it, and change the way these
interpreters handle scoping, parameter-passing, control structure, etc.

Having used interpreters to study the execution of languages, the authors show how the same ideas
can be used to analyze programs without running them. In two new chapters, they show how to
implement type checkers and inferencers, and how these features interact in modern object-
oriented languages.

Part of the reason for the appeal of this approach is that the authors have chosen a good tool—the
Scheme language, which combines the uniform syntax and data-abstraction capabilities of Lisp
with the lexical scoping and block structure of Algol. But a powerful tool becomes most powerful
in the hands of masters. The sample interpretersin this book are outstanding models. Indeed, since
they are runnable models, I'm sure that these interpreters and analyzers will find themselves at the
cores of many programming systems over the coming years.

Thisisnot an easy book. Mastery of interpreters does not come easily, and for good reason. The
language designer is afurther level removed from the end user than is the ordinary application
programmer. In designing an application program, you think about the specific tasksto be
performed, and consider what features to include. But in designing alanguage, you consider the
various applications people might want to implement, and the ways in which they might
implement them. Should your language have static or dynamic scope, or a mixture? Should it have
inheritance? Should it pass parameters by reference or by value? Should continuations be explicit
or implicit? It all depends on how you expect your language to be used, on which kinds of
programs should be easy to write, and which you can afford to make more difficult.

Also, interpretersreally are subtle programs. A simple change to aline of code in an interpreter
can make an enormous difference in the behavior of the resulting language. Don't think that you
can just skim these programs—very few people in the world can glance at a new interpreter and
predict



from that how it will behave even on relatively simple programs. So study these programs. Better
yet, run them—thisis working code. Try interpreting some simple expressions, then more
complex ones. Add error messages. Modify the interpreters. Design your own variations. Try to
really master these programs, not just get a vague feeling for how they work.

If you do this, you will change your view of your programming, and your view of yourself asa
programmer. Y ou'll come to see yourself as adesigner of languages rather than only a user of
languages, as a person who chooses the rules by which languages are put together, rather than only
afollower of rulesthat other people have chosen.

Hal AbelsonCambridge, MAAugust, 2000



Preface

Goal

This book is an analytic study of programming languages. Our goal is to provide a deep, working
understanding of the essential concepts of programming languages. These essentials have proved
to be of enduring importance; they form a basis for understanding future developmentsin
programming languages.

Most of these essentials relate to the semantics, or meaning, of program el ements. Such meanings
reflect how program elements are interpreted as the program executes. Programs called
interpreters provide the most direct, executable expression of program semantics. They process a
program by directly analyzing an abstract representation of the program text. We therefore choose
interpreters as our primary vehicle for expressing the semantics of programming language
elements.

The most interesting question about a program as object is, "What does it do?' The study of
interpreters tells us this. Interpreters are critical because they reveal nuances of meaning, and are
the direct path to more efficient compilation and to other kinds of program analyses.

Interpreters are aso illustrative of abroad class of systems that transform information from one
form to another based on syntax structure. Compilers, for example, transform programs into forms
suitable for interpretation by hardware or virtual machines. Though general compilation
techniques are beyond the scope of this book, we do develop several elementary program
trandation systems. These reflect forms of program analysistypical of compilation, such as
control transformation, variable binding resolution, and type checking.



The following are some of the strategies that distinguish our approach.

1. Each new concept is explained through the use of a small language. These languages are often
cumulative: later languages may rely on the features of earlier ones.

2. Language processors such as interpreters and type checkers are used to explain the behavior of
programsin a given language. They express language design decisions in a manner that is both
formal (unambiguous and complete) and executable.

3. When appropriate, we use interfaces and specifications to create data abstractions. In thisway,
we can change data representation without changing programs. We use thisto investigate
alternative implementation strategies.

4. Our language processors are written both at the very high level needed to produce a concise and
comprehensible view of semantics and at the much lower level needed to understand
implementation strategies.

5. We show how simple algebraic manipulation can be used to predict the behavior of programs
and to derive their properties. In general, however, we make little use of mathematical notation,
preferring instead to study the behavior of programs that constitute the implementations of our
languages.

6. The text explains the key concepts, while the exercises explore aternative designs and other
issues. For example, the text deals with static binding, but dynamic binding is discussed in the
exercises. One thread of exercises applies the concept of lexical addressing to the various
languages developed in the book.

We provide severa views of programming languages using widely varying levels of abstraction.
Frequently our interpreters provide avery high-level view that expresses language semanticsin a
very concise fashion, not far from that of formal mathematical semantics. At the other extreme, we
demonstrate how programs may be transformed into a very low-level form characteristic of
assembly language. By accomplishing this transformation in small stages, we maintain aclear
connection between the high-level and low-level views.



Organization

The first two chapters provide the foundations for a careful study of programming languages.
Chapter 1 emphasi zes the connection between inductive data specification and recursive
programming and introduces several notions related to the scope of variables. Chapter 2
introduces a data type facility. Thisleads to a discussion of data abstraction and examples of
representational transformations of the sort used in subsequent chapters.

Chapter 3 uses these foundations to describe the behavior of programming languages. It introduces
interpreters as mechanisms for explaining the run-time behavior of languages and develops an
interpreter for asimple, lexically scoped language with first-class procedures, recursion, and
assignment to variables. Thisinterpreter is the basis for much of the material in the remainder of
the book. The chapter then explores call-by-reference, call-by-need, and call-by-name parameter-
passing mechanisms, and culminates with a sketch of an interpreter for an imperative language.

Chapter 4 extends the language of chapter 3 with type declarations. First we implement atype
checker. Next we show how to use the types to enforce abstraction boundaries. Finally we show
how the types in program can be deduced by a unification-based type inference algorithm.

Chapter 5 presents the basic concepts of object-oriented languages, centered on classes (but
ignoring types, which are deferred to chapter 6). We develop an efficient run-time architecture,
which is used as the basis for the material in chapter 6.

Chapter 6 combines the ideas of the type checker of chapter 4 with those of the object-oriented
language of chapter 5, leading to a conventional typed object-oriented language. This requires
introducing new concepts including abstract classes, abstract methods, and casting.

Chapter 7 rewrites our basic interpreter in continuation-passing style. The control structure that is
needed to run the interpreter thereby shifts from recursion to iteration. This exposes the control
mechanisms of the interpreted language, and strengthens one's intuition for control issuesin
general. It also provides the means for extending the interpreter with exception-handling and multi-
threading mechanisms. Finally, we use continuation-passing style to present logic programming.



Chapter 8 isthe companion to the previous chapter. There we show how to transform our familiar
interpreter into continuation-passing style; here we show how to accomplish this for amuch larger
class of programs. Continuation-passing style is a powerful programming tool, for it allows any
sequential control mechanism to be implemented in almost any language. The algorithmisalso a
fine example of an abstractly specified source-to-source program transformation.

The dependencies of the various chapters are shown in the figure below.
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Finally, appendix A describes our SLLGEN parsing system.

Usage

This material has been used in both undergraduate and graduate courses. In addition, it has been
used in continuing education courses for professional programmers. We assume background in
data structures and experience both in a procedural language such as C, C++, or Java, and in
Scheme.

Exercises are avital part of the text and are scattered throughout. They range in difficulty from
being trivial if related material is understood [ *], to requiring many hours of thought and
programming work [+ # #]. A great deal of material of applied, historical, and theoretical interest
resides within them. We recommend that each exercise be read and some thought be given asto
how to solveit. Although we write our program interpretation and transformation systemsin
Scheme, any language that supports both first-class procedures and assignment (ML, Common
Lisp, etc.) is adequate for working the exercises.



Exercise 0.1 [ *] We often use phrases like "some languages have property X." For each such phrase, find one
or more languages that have the property and one or more languages that do not have the property. Fedl freeto
ferret out this information from any descriptive book on programming languages (say (Scott, 2000), (Sethi,
1996), or (Pratt & Zelkowitz, 1996)).

Exercise 0.2 [ *] Determine the rationale for the existence of index items, such asCONS- pPr i M that do not
appear in the body of the book.

Thisis ahands-on book: everything discussed in the book may be implemented within the limits
of atypical university course. Because the abstraction facilities of functional programming
languages are especially suited to this sort of programming, we can write substantial language-
processing systems that are nevertheless compact enough that one can understand and manipulate
them with reasonable effort.

The web site, available through the publisher, includes complete Scheme code for al of the
interpreters and analyzers in this book. The code is as compliant with RsRS (Kelsey et al., 1998)
as we could make it. The site includes pointers to several Scheme implementations (some of
which are freely available) and compatibility files that should alow our code to run without
change on these implementations or any Scheme implementation that is RsRS-compliant.
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1 I nductive Sets of Data.

This chapter introduces recursive programming, along with its relation to mathematical induction.
The notion of scope, which plays a primary role in programming languages, is also presented.
Section 1.1 and section 1.2 introduce methods for inductively specifying data structures and show
how such specifications may be used to guide the construction of recursive programs. Section 1.3
then introduces the notions of variable binding and scope.

The programming exercises are the heart of this chapter. They provide experience that is essential
for mastering the technique of recursive programming upon which the rest of this book is based.

1.1 Recursively Specified Data

When writing code for a procedure, we must know precisely what kinds of values may occur as
arguments to the procedure, and what kinds of valuesit islegal for the procedure to return. Often
these sets of values are complex. In this section we introduce formal techniques for specifying sets
of values.

1.1.1 Inductive Specification

Inductive specification is a powerful method of specifying a set of values. To illustrate this
method, we use it to describe a certain subset of the natural numbers:

Definition 1.1.1 Define the set Sto be the smallest set of natural numbers satisfying the following
two properties:

1.00 S and

2. Whenever xJ S, thenx+ 30 S



A "smallest set” isthe one that satisfies properties 1 and 2 and that is a subset of any other set
satisfying properties 1 and 2. It is easy to see that there can be only one such set: if St and S both

satisfy properties 1 and 2, and both are smallest, then S [0 S (since Stissmallest), and S [0 S
(since S issmallest), hence &1 = S.

Let us see if we can describe some partial information about Sto arrive at a non-inductive
specification. We know that O isin S by property 1. Since 0 (I S, by property 2 we conclude that 3
[0S Thensince 3 [0 S by property 2 we conclude that 6 [1 S, and so on. So we see that all the
multiples of 3arein S If welet M denote the set of al multiples of 3, we can restate this
conclusion asM [1 S, But the set M itself satisfies properties 1 and 2. Since Sis a subset of every
set that satisfies properties 1 and 2, it must be that ST M. So we deduce that S= M, the set of

multiples of 3. Thisis plausible: we know all the multiples of 3 must bein S and anything elseis
extraneous.

Thisisatypical inductive definition. To specify aset Sinductively, defineit to be the smallest set
satisfying two properties of the following form:

1. Some specific values must bein S
2. If certain values arein S, then certain other valuesareasoin S

Sticking to this recipe guarantees that S consists precisely of those values inserted by property 1
and those values included by repeated application of property 2. As stated, thisrecipeis rather
vague. It can be stated more precisely, but that would take us too far afield. Instead, let us see how
this process works on some more examples.

Definition 1.1.2 The set list-of-numbers is the smallest set of values satisfying the two properties:
1. The empty list isa list-of-numbers, and

2. If l isalist-of-numbers and n is a number, then the pair (n . 1) is a list-of-numbers.

From this definition we infer the following:

1. () isalist-of-numbers, because of property 1.

2.(14 . ()) isalist-of-numbers, because 14 isanumber and () isalist-of-numbers.



3.(3 . (14 . ())) isalist-of-numbers, because 3 isanumberand (14 . ()) isalist-of-
numbers.

4.(-7 . (3 . (14 . ()))) isalist-of-numbers, because- 7 isanumber and ( 3 .
(14 . ())) isalist-of-numbers.

5. Nothing is alist-of-numbers unlessit is built in this fashion.
Converting from dot notation to list notation, we seethat (), (14), (3 14),and(-7 3

14) areall members of list-of-numbers.

1.1.2 Defining Sets of Valueswith Backus-Naur Form

The previous exampleisfairly straightforward, but it is easy to imagine how the process of
describing more complex data types becomes quite cumbersome. To remedy this, we use a
notation called Backus-Naur Form, or BNF. BNF was originally devel oped to specify the syntactic
structure of programming languages, but we will use it to define sets of values as well by using the
printed representation of those values.

For example, we can define the set list-of-numbersin BNF as follows:

(list-of-numbers) == ()
(list-of-numbers) == ({number) . (list-of-numbers})

This set of rulesiscalled agrammar.

Here we have two rules corresponding to the two propertiesin Definition 1.1.2 above. The first
rule saysthat the empty list isin <list-of-numbers>, and the second says that if nisin <number>
and | isin <list-of-numbers>, then (n . I) isin <list-of-numbers>.

Let uslook at the pieces of this definition. In this definition we have:

» Nonterminal Symbols. These are the names of the sets being defined. These are customarily
written with angle brackets around the name of the set, e.g. <list-of-numbers>. In this case there is
only one, but in general, there might be several sets being defined. These sets are sometimes called
syntactic categories.

* Terminal Symbols. These are the characters in the external representation, in thiscase ., (, and ).

 Productions. The rules are often called productions. Each production has aleft-hand side, which
isanontermina symbol, and aright-hand side,



which consists of terminal and nonterminal symbols. The left- and right-hand sides are usually
separated by the symbol ::=, read is or can be. The right-hand side specifies a method for
constructing members of the syntactic category in terms of other syntactic categories and terminal
symbols, such asthe left and right parentheses, and the period.

Often some syntactic categories mentioned in a BNF rule are left undefined when their meaning is
sufficiently clear from context, such as <number>.

BNF is often extended with afew notational shortcuts. One can write a set of rulesfor asingle
syntactic category by writing the left-hand side and ::= just once, followed by all the right-hand
sides separated by the special symbol | (vertical bar, read or). A <list-of-numbers> can then be
defined by

(list-of-numbers) == () | ({(number) . {list-of-numbers))

Another useful notation is to omit the left-hand side of a production when it is the same as the left-
hand side of the preceding production. Using this convention our example would be written as:

{list-of-numbers) == ()
{{number) . (list-of-numbers))

Another shortcut is the Kleene star, expressed by the notation {. . .} *. When this appearsin aright-
hand side, it indicates a sequence of any number of instances of whatever appears between the
braces. Using the Kleene star, the definition of <list-of-numbers> in list notation is ssimply

{list-of-numbers) == ({{number}}*)
Thisincludes the possibility of no instances at all. If there are zero instances, we get the empty list.

A variant of the star notation isKleene plus{. . .} +, which indicates a sequence of one or more
instances. Substituting + for * in the above example would define the syntactic category of non-
empty lists of numbers. These notational shortcuts are just that—it is always possible to do
without them by using additional BNF rules.

Y et another variant of the star notation is the separated list notation. If <expression>isa
nonterminal, we write { <expression>} * (¢ to denote a sequence of any number of instances of the
nonterminal <expression>, separated by the non-empty character sequence c. Thisincludes the
possibility of no instances at all. If there are zero instances, we get the empty string.



If asetisspecified using BNF rules, a syntactic derivation may be used to prove that a given data
value is amember of the set. Such a derivation starts with the nonterminal corresponding to the
set. At each step, indicated by an arrow [ , anonterminal is replaced by the right-hand side of a
corresponding rule, or with a known member of its syntactic class if the class was |eft undefined.
For example, the previous demonstration that (14 . () ) isalist of numbers may be formalized
with the following syntactic derivation:

<list-of-numbers>[1 (<number> . <list-of-numbers>)J (14 . <list-of-numbers>) (14 .

()

The order in which nonterminals are replaced does not matter. Thus another possible derivation of

(14 . ()) is
<list-of-numbers>[1 (<number> . <list-of-numbers>)J (<number>.())d (14 . ())

Exercise 1.1 [*] Write a syntactic derivationthat proves(-7 . (3 . (14 . ()))) isalistof
numbers.

Let us consider the BNF definitions of some other useful sets. Many symbol manipulation
procedures are designed to operate on lists that contain only symbols and other similarly restricted
lists. We formalize this notion with these rules:

{s-list) m= ({{symbol-expression) }")
\symbol-expression) = (symbol) | {s-list)

The literal representation of an s-list contains only parentheses and symbols. For example,
(abc)(an (((s-list)) (with () lots) ((of) nesting)))

A binary tree with numeric leaves and interior nodes labeled with symbols may be represented
using three-element lists for the interior nodes as follows

{bintree) = (number) | ({symbol} (bintree) {(bintree})



Examples of such treesfollow:
12(foo 1 2)(bar 1 (foo 1 2))(baz (bar 1 (foo 1 2)) (biz 4 5))

A simple mini-language that is often used to study the theory of programming languagesisthe
lambda calculus. This language consists only of variable references, | anbda expressions with a
single formal parameter, and procedure calls. We can define it with the following grammar:

{expression) 1= {identifier)
= (lambda ({identifier)) {expression})
n= ({expression) {expression))

where <identifier> is any symbol other than | anbda. This grammar defines the elements of
<expression> as Scheme values, so it is convenient to write programs that manipulate them.

We can even use BNF to specify concisely the syntactic category of datain Scheme. In Scheme,
numbers, symbols, booleans, and strings all have literal representations, which we associate with
the syntactic categories <number>, <symbol>, <boolean>, and <string>, respectively. We can then
use BNF to specify the representations for lists, improper lists (which end with dotted pairs), and
Vectors:

(list) p= ({{datum}}*}

(dotted-datum) == ({{datum}}* . {datum})

{vector) p= # ({ {datum)}*)

{datum) n= (number) | (symbol} | (boolean) | {string)

n= (list) | {dotted-datum) | {vector)

These four syntactic categories are all defined in terms of each other. Thisislegitimate because
each of these compound data types contains components that may be numbers, symbols, booleans,
strings, or other lists, improper lists or vectors.



To illustrate the use of this grammar, consider the following syntactic derivation that proves ( #t
(foo . ()) 3) isalist.

<list>J (<datum> <datum> <datum>)J (<boolean> <datum> <datum>)[] (#t <datum>
<datum>)[ (#t <dotted-datum> <datum>)[] (#t ({<datum>}+.<datum>) <datum>)[ (#t
(<symbol> . <datum>) <datum>)0 (#t (f oo . <datum>) <datum>)1 (#t (f 00 . <list>)
<datum>)OJ (#t (foo . ()) <daum>)O (#t (foo . ()) <number>)1 (#t
(foo . ()) 3

All three elements of the outer list are introduced at once. This shortcut is possible because the
grammar uses a Kleene star. Of course, the Kleene star and plus notation could be eliminated by
introducing new nonterminals and productions, and the three list elements would then be
introduced with three derivation steps instead of one.

Exercise 1.2 [ *] Rewrite the <datum> grammar without using the Kleene star or plus. Then indicate the
changes to the above derivation that are required by this revised grammar.

Exercise 1.3 [*] Write a syntactic derivation that proves (a " m xed" # (bag (of
dat @) ) ) isadatum, using either the grammar in the book or the revised grammar from the preceding
exercise. What iswrongwith(a . b . ¢)?

BNF rules are said to be context free because a rule defining a given syntactic category may be
applied in any context that makes reference to that syntactic category. Sometimes thisis not
restrictive enough: anode in a binary search tree is either empty or contains a key and two subtrees

{bin-search-tree) = () | ({key} (bin-search-tree) (bin-search-tree) )

This correctly describes the structure of each node but fails to mention an important fact about
binary search trees: all the keysin the left subtree are less than (or equal to) the key in the current
node, and all the keys in the right subtree are greater than the key in the current node. Such
constraints are said to be context sensitive, because they depend on the context in which they are
used.



Context-sensitive constraints also arise when specifying the syntax of programming languages.
For instance, in many languages every identifier must be declared before it is used. This constraint
on the use of identifiersis sensitive to the context of their use. Formal methods can be used to
specify context-sensitive constraints, but these methods are far more complicated than BNF. In
practice, the usual approach isfirst to specify a context-free grammar using BNF. Context-
sensitive constraints are then added using other methods, usually prose, to complete the
specification of a context-sensitive syntax.

1.1.3 Induction

Having described sets inductively, we can use the inductive definitions in two ways: to prove
theorems about members of the set and to write programs that manipul ate them. Here we present
an example of such a proof, using the example of binary trees from page 5; writing the programsis
the subject of the next section.

Theorem 1.1.1 Let s [1 <bintree>, where <bintree> is defined by
{bintree) = (number} | ({symbol) {bintrec) {bintree))
Then s contains an odd number of nodes.

Proof: The proof is by induction on the size of s, where we take the size of sto be the number of
nodesin s. The induction hypothesis, IH(K), is that any tree of size < k has an odd number of
nodes. We follow the usual prescription for an inductive proof: we first prove that IH(0) istrue,
and we then prove that whenever k is anumber such that IH istruefor k, then IH istruefor k+ 1
also.

1. There are no trees with 0 nodes, so IH(0) holds trivially.

2. Let k be anumber such that IH(k) holds, that is, any tree with < k nodes actually has an odd
number of nodes. We need to show that IH(k + 1) holds as well: that any tree with < k + 1 nodes

has an odd number of nodes. If shas < k + 1 nodes, there are exactly two possibilities according to
the BNF definition of <bintree>:

(@) scould be of the form n, where nisanumber. In this case, s has exactly one node, and oneis
odd.



(b) s could be of the form (sym s1 s2), where symis asymbol and s1 and 2 are trees. Now s1 and 2
must have fewer nodes than s. Since shas< k + 1 nodes, s1 and s2 must have < k nodes. Therefore
they are covered by IH(k), and they must each have an odd number of nodes, say 2n:1 + 1 and 2n2
+ 1 nodes, respectively. Hence the total number of nodes in the tree, counting the two subtrees and
theroot, is

(2 + 1)+ (202 + 1)+ 1 = 2(0y + 12 + 1)+ 1
which is once again odd.

This completes the proof of the claim that IH(k + 1) holds and therefore compl etes the induction.

i

The key to the proof is that the substructures of atree s are always smaller than sitself. Therefore
the induction might be rephrased as follows:

1. IH istrue on simple structures (those without substructures).
2. If IH istrue on the substructures of s, then it istrue on sitself.

This pattern of proof iscalled structural induction.

Exercise 1.4 [ * *] Prove that if e 0 <expression>, then there are the same number of |eft and right
parentheses in e (where <expression> is defined asin Section 1.1.2).

1.2 Recursively Specified Programs

In the previous section, we used the method of inductive definition to characterize complicated
sets. Starting with simple members of the set, the BNF rules were used to build more and more
complex members of the set. We now use the same idea to define procedures for manipulating
those sets. First we define the procedure's behavior on simple inputs, and then we use this
behavior to define its behavior on more complex arguments.

Imagine we want to define a procedure to find nonnegative powers of numbers, e.g. (n,x) = Xn,
where n is a nonnegative integer and x # 0. It is easy to define a sequence of procedures that
compute particular powers. eo(X) = Xo, €1(X) = X1, €2(X) = x2:



eolx)=1

e (x)= x x ey(x)
ex{x)= x x &(x)
e3(x)= x x ez(x)



In generd, if nisanonnegative integer,

l’_.,-{:l':] — { 1 N = 'El

X ey_q(x) i .

At each stage, we use the fact that the problem has already been solved for smaller n. Next the subscript
can be removed from e by making it a parameter:

1. 1fnis0, en, x) = 1.

2. If nisgreater than 0, we assume it is known how to solve the problem for n — 1. That is, we assume that e
(n -1, x) iswell defined. Therefore, e(n, X) =x x e(n — 1, X).

This gives us the definition:

e, x) = { 1 n=>0

xxeln—1,x) n > 0.
To prove that e(n, X) = xn for any nonnegative integer n, we proceed by induction on n:
1. (Base Step) Whenn=0, e(0,xX) = 1 = xo.

2. (Induction Step) Assume that the procedure works when its first argument isk, that is, e(k, X) = xx for
some nonnegative integer k. Then we claim that e(k + 1, X) = xk+1. We calculate as follows

efk +1,x) = xxelk x) (definition of )
=xxx (IH atk)
= yk+l (fact about exponentiation)

This completes the induction.

We can write a program to compute e based upon the inductive definition

(define e (lanmbda (n x) (if (zero? n) 1 (* x (e (- n1) x)N))



The two branches of thei f expression correspond to the two cases detailed in the definition.

If we can reduce a problemto a smaller subproblem, we can call the procedure that solves the
problem to solve the subproblem. The solution it returns for the subproblem may then be used to
solve the original problem. This works because each time we call the procedure, it is called with a
smaller problem, until eventually it is called with a problem that can be solved directly, without
another cal to itself.

When a procedure callsitself in this manner, it is said to be recursively defined. Such recursive
calls are possible in Scheme and most other languages. The general phenomenon is known as
recursion, and it occurs in contexts other than programming, such as inductive definitions. Later
we shall study how recursion isimplemented in programming languages.

Often an inductive proof can lead usto arecursive procedure. In Theorem 1.1.1, we showed that
the number of nodesin abinary tree, defined by

(bintree) = (number} | ({symbol} (bintree} (bintree})

isawaysodd. Let uswrite aprocedure count - nodes to count these nodes. If sis anumber,
then (count - nodes s) should be 1. If sisof theform (sym st &), then (count - nodes 9)
should be (count - nodes s1) + (count - nodes ) + 1. Thisleads to the program

(define count-nodes (lanbda (s) (if (number? s) 1 (+ (count-
nodes (cadr s)) (count -nodes (caddr s)) 1))

The procedure and the proof of the theorem have the same structure.

1.2.1 Deriving Programs from BNF Data Specifications

In the previous example, we used induction on integers, so the subproblem was solved by
recursively calling the procedure with a smaller value of n. When manipulating inductively
defined structures, subproblems are usually solved by calling the procedure recursively on a
substructure of the original.

A BNF definition for the type of data being manipulated serves as a guide both to where recursive
calls should be used and to which base cases need to be handled. Thisis afundamental point:



Follow the Grammar!

When defining a program based on structural induction, the structure of the program should be
patterned after the structure of the data.

Typically this means that we will need one procedure for each syntactic category in the grammar.
Each procedure will examine the input to see which production it corresponds to; for each
nonterminal that appears in the right-hand side, we will have arecursive call to the procedure for
that nonterminal.

As an example, consider a procedure that determines whether agiven list is a member of <list-of-
numbers>.

A typical kind of program based on inductively defined structuresis a predicate that determines
whether a given value is a member of a particular set. Let us write a Scheme predicatel i st - of -
nunber s? that takes alist and determines whether it belongs to the syntactic category <list-of-
numbers>.

> (list-of-nunmbers? ' (1 2 3))#t> (list-of-nunbers? '(1 two 3))# > (list-of-
numbers? ' (1 (2) 3))#f

We can define the set of lists as

{list) == () | ({datum} . {list})

and let us recall the definition of <list-of-numbers>:
{list-of-numbers) 2= () | ({(number} . (list-of-numbers))

We begin by writing down the simplest behavior of the procedure: what it does when theinput is
the empty list.

(define |ist-of-
nunmbers? (|l anbda (I st) (if (null? Ist) o))

By thefirst production in the grammar for <list-of-numbers>, the empty list is a<list-of-
numbers>, so the answer should be #t .



(define |ist-of-
nunbers? (Il anbda (I st) (if (null? Ist)] #t o))

Throughout this book, barsin the left margin indicate lines that have changed since an earlier
version of the same definition.

If the input is not empty, then by the grammar for <list>, it must be of the form
({datum} . {list})

that is, alist whose car is a Scheme datum and whose cdr is alist. Comparing this to the grammar
for <list-of-numbers>, we see that such a datum can be an element of <list-of-numbers> if and
only if its car isanumber and its cdr is alist-of-numbers. To find out if the cdr is alist-of-
numbers, we call | i st - of - nunber s? recursively:

(define list-of-numbers?
(lambda (lst)
{(if (null? lst)
#e
{and
(number? (car lst))
(lisc-of-numbers? (cdr 1lst)))}))

To prove the correctness of | i st - of - nunber s?, wewould like to use induction on the length
of | st.

1. The procedurel i st - of - nunber s? works correctly on lists of length 0, since the only list of
length O isthe empty list, for which the correct answer, true, is returned.

2. Assuming | i st - of - nunber s? works correctly on lists of length k, we show that it works on
listsof lengthk + 1. Let| st be such alist. By the definition of <list-of-numbers>, | st belongs
to <list-of-numbers> if and only if its car isanumber and its cdr belongs to <list-of-numbers>.
Sincel st isof length k + 1, its cdr is of length k, so by the induction hypothesis we can
determine the cdr's membership in <list-of-numbers> by passingittol i st - of - nunber s?.
Hencel i st - of - nunber s? correctly computes membership in <list-of-numbers> for lists of
length k + 1, and the induction is compl ete.



The procedure terminates because every timel i st - of - nunber s? iscalled, it is passed a shorter list. Every time the
procedure recurs, it will be working on shorter and shorter lists, until it reaches the empty list.

Exercise 1.5[*] Thisversionof | i st - of - number s? works properly only when its argument is alist. Extend the definitionof | i St -
of - nunber s? sothat it will work on an arbitrary Scheme <datum> and return #f on any argument that is not alist.

As asecond example, we define aprocedure nt h- el t that takesalist | st and azero-based index n and returns element
number n of | st .

> (nth-elt "(abc) 1)b
The procedurent h- el t doesfor listswhat vect or - r ef doesfor vectors.

Actually, Scheme provides the procedurel i st - r ef , whichisthe sameasnt h- el t except for error reporting, but we choose
another name because standard procedures should not be tampered with unnecessarily.

When n is 0, the answer is simply the car of | st . If n is greater than O, then the answer iselement n — 1 of | st 'scdr. Since
neither the car nor cdr of | st existsif | st isthe empty list, we must guard thecar and cdr operations so that we do not take
the car or cdr of an empty list.

(define nth-elt (lanmbda (Ist n) (if (null? Ist) (eopl:error 'nth-
elt "List too short by ~s elenents" (+ n 1)) (if (zero? n) (car Ist) (nth-
elt (cdr Ist) (- n1))))))

The procedure eopl : err or signalsan error. Itsfirst argument is a symbol that allows the error message to identify the
procedure that called eopl : er r or . The second argument is a string that is then printed in the error message. There must then
be an additional argument for each instance of the character sequence ~s in the string. The values of these arguments are printed
in place of the corresponding ~s when the string is printed. After the error message is printed, the computation is aborted.

eopl : error isnot astandard Scheme procedure, but most implementations provide a similar facility.



Let uswatch how nt h- el t computesits answer:

(nth-elt '"(abcde) 3)=(nth-elt "(bcde) 2)=(nth-
elt '(c de) 1)= (nth-elt '(de 0=4d

Herent h- el t recurs on shorter and shorter lists, and on smaller and smaller numbers.

If error checking were omitted, we would haveto rely on car and cdr to complain about being
passed the empty list, but their error messages would be less helpful. For example, if we received
an error message from car , we might have to look for uses of car throughout our program. Even
thiswould not find the error if nt h- el t were provided by someone else, so that its definition
was not a part of our program.

L et us try one more example of this kind before moving on to harder examples. The standard
procedure | engt h determines the number of elementsin alist.

> (length '(a b ¢c))3> (length "((x) ()))2

We write our own procedure, called | i st - | engt h, to do the same thing. The length of the
empty listisO.

(define list-length (lanbda (Ist) (if (null? Ist) 0 o))

The ellipsisisfilled in by observing that the length of a non-empty list is one more than the length
of itscdr.

(define list-
length (lanmbda (Ist) (if (null? Ist) 0] (+ 1 (list-
length (cdr Ist))))))



The proceduresnt h-el t andl i st -1 engt h do not check whether their arguments are of the
expected type. Programs such as this that fail to check that their input is properly formed are
fragile. (Usersthink a program is broken if it behaves badly, even when it is being used
improperly.) It is generally better to write robust programs that thoroughly check their arguments,
but robust programs are often much more complicated.

The specification of a procedure should include the assumptions the procedure may make about its
input, and what kinds of behavior are permitted if these assumptionsfail. If a procedure is aways
called in a context that causes these assumptions to be satisfied, it is wasteful (and at worst
impossible) for the procedure to check its input. If the context in which the procedure will be
called is unknown, then a procedure that does not check its arguments may fail in unexpected and
unwelcome ways.

Aswe are concerned in this book with concisely conveying ideas, rather than providing general
purpose tools, many of our programs are fragile. Even when programs are written solely to test
ideas, some error checking may be wise to facilitate debugging.

Exercise 1.6 [ *] What happensif Nt h- el t andl i St - | engt h are passed symbolswhen alist is
expected? What isthe behavior of | 1 St - r ef and| engt h in such cases? Write robust versions of
nth-elt andl i st-1ength.

Exercise 1.7 [ * *] The error message from Nt h- el t isuninformative. Rewrite Nt h- el t sothat it
produces amore informative error message, suchas"(@ b C€) doesnot have an element 4." Hint: use
| et r ec tocreate alocal recursive procedure that does the real work.

1.2.2 Some I mportant Examples

In this section, we present some simple recursive procedures that will be used as examples later in
this book. Asin previous examples, they are defined so that (1) the structure of a program reflects
the structure of its data and (2) recursive calls are employed at points where recursion isused in
the set's inductive definition.

renmove-first

Thefirst procedureisr enove-f i r st , which takes two arguments. asymbol, s, and alist of
symbols, | os. It returns alist with the same elements arranged in the same order as| os, except
that the first occurrence of the symbol s isremoved. If thereis no occurrenceof s inl os, then

| os isreturned.



> (remove-first 'a '(a b c))(b c)> (renove-first 'b '"(e f g))(e f @)
> (remove-first '"a4 '(cl a4 cl a4))(cl cl a4)> (renmove-first "x '())()

Before we start on the program, we must compl ete the problem specification by defining the set
<list-of-symbols>. Unlike the s-lists introduced in the last section, these lists of symbols do not
contain sublists.

{list-of-symbols) == () | ({symbol} . {list-of-symbols))

A list of symbolsis either the empty list or alist whose car isa symbol and whose cdr isalist of
symbols. If thelist is empty, there are no occurrences of s to remove, so the answer isthe empty
list.

(define renove-
first (lanmbda (s |o0s) (if (null? los) "() o))

If | os isnon-empty, isthere some case where we can determine the answer immediately? If | os
=(s si...s1), thefirst occurrence of s isasthefirst element of | 0s. So the result of removing
itisjust (st. .. sn1).

(define remove-first
{lambda (=2 los)
(if (null? los)
*{)
1 (if (egv? (car los) s)
| [cdr los)

caa )

If thefirst element of | os isnots,say |l os =(sost. .. s1), then we know that so is not the first
occurrence of s. Therefore the first element of the answer must be so. Furthermore, the first
occurrence of s inl os must beitsfirst occurrencein (si. . . s»-1). So the rest of the answer must
be the result of removing the first occurrence of s from the cdr of | os. Sincethe cdr of | os is
shorter than | os, we may recursively call r enove-fi r st toremove



s fromthe cdr of | 0s. Thus the answer may be obtained by using (cons (car 10s) (renmove-first s (cdr |0s))).Withthis, the complete definition of r enove- fi r st
follows.

(define renove-first (lanmbda (s |o0s) (if (null? 1o0s) () (if (eqv? (car los) s) (cdr los)| (cons (car los) (renove-
first s (cdr 10s)))))))
Exercise 1.8 [*] Inthe definition of r emove- f i r st ,if theinneri f 'salternative(cons .. .) werereplacedby (r emove-first s (cdr | 0s)),what function would the resulting procedure
compute?
renove

The second procedureisr enove, defined over symbols and lists of symbols. Itissimilartor enove- fi rst, but it removes all occurrences of a given symbol from alist of symboals,
not just the first.

> (renpve 'a4 '(cl a4 dl1 a4))(cl di)

Sincer enove-first andr enmove work on the same input, their structureis similar. If thelist | os isempty, there are no occurrences to remove, so the answer is again the empty list.
If | os isnon-empty, there are again two casesto consider. If thefirst element of | os isnot s, the answer isobtained asinr enove-first.

(define renove (lanmbda (s |0s) (if (null? 10s) () (if (eqv? (car los) s) (cons (car los) (remove s (cdr 10s)))))))

If thefirst element of | 0s isthe same as s, certainly the first element is not to be part of the result. But we are not quite done: all the occurrences of s must still be removed from the cdr
of I os. Once again this may be accomplished by invoking r enove recursively on the cdr of | 0s.



(define renmove (lanbda (s |o0s) (if (null? 1os) () (if (eqv? (car los) s)| (renove s (cdr 10s)) (cons (car los) (remove s (cdr 10s)))))))
Exercise 1.9 [*] Inthe definition of r enove, if theinner i f 'saternative(cons .. .) werereplacedby (r enove s (cdr | 0S) ), what function would the resulting procedure compute?

subst

The third of our examplesissubst . It takes three arguments: two symbols, newand ol d, and an s-list, sl i st . All elementsof sl i st are examined, and anew list isreturned that issimilar to sl i st but
with all occurrences of ol d replaced by instances of new.

> (subst "a 'b "((bc) (b () d)))((ac) (a() d)

Since subst isdefined over s-lists, its organization reflects the definition of s-lists

{s-list) z= ({{symbol-expression) }"}
{symbol-expression) ::= (symbol} | {s-list)

First we rewrite the grammar to eliminate the use of the Kleene star:

{s-list) u= ()
1= ({symbol-expression}) . (s-list))
{symbol-expression) i:i= {(symbol} | {s-list)

This example is more complex than our previous ones because the grammar for its input contains two nonterminals, <s-list> and <symbol-expression>. Our follow-the-grammar pattern says we should have
two procedures, one for dealing with <s-list> and one for dealing with <symbol-expression>:

(define subst (lanbda (new old slist) ...))(define subst-in-synbol-expression (lanbda (new old se) L))



Let usfirst work on subst . If thelist is empty, there are no occurrences of ol d to replace.
(define subst (lanbda (new old slist) (if (null? slist) () .0)))

If sl i st isnon-empty, its car isamember of <symbol-expression> and its cdr is another s-list. In this
case, the answer should be alist whose car is the result of changing ol d to newinthecar of sl i st
and whose cdr is the result of changing ol d to newinthecdr of sl i st . Sincethecar of sl i st isan
element of <symbol-expression>, we solve the subproblem for the car using subst - i n- synbol -
expr essi on. Sincethecdr of sl i st isan element of <s-list>, we recur on the cdr using subst :

(define subst
(lambda (new old slist)
(if (null? slist)

.I_:']

lcons
(subst-in-symbol -expression new old (car sliat))
{subst new old (cdr sliscllllld

Now we can move onto subst - i n- synbol - expr essi on. From the grammar, we know that the
symbol expression se iseither asymbol or an s-list. If it isasymbol, we need to ask whether it isthe
same asthe symbol ol d. If itis, the answer isnew; if it is some other symbol, the answer is the same
asse. If se isan slist, then we can recur using subst to find the answer.

(define subst-in-symbol-expression
(lambda (new old se)
(if (symbol? se)
{(if (egv? se old) new se)
{subst new old se})))

Since we have strictly followed the BNF definition of <s-list> and <symbol-expression>, this recursion
is guaranteed to halt. Observethat subst and subst - i n- synbol - expr essi on call each other
recursively. Such procedures are said to be mutually recursive.

The decomposition of subst into two procedures, one for each syntactic category, is an important
technique. It allows usto think about one syntactic category at atime, which isimportant in more
complicated situations.



Exercise 1.10 [ *] Inthelast line of Subst - i n- synbol - expr essi on, therecursionisonse
and not a smaller substructure. Why is the recursion guaranteed to halt?Exercise 1.11 [ *] Eliminate the one
cdl tosubst - i n- synbol - expr essi oninsubst by replacing it by its definition and
simplifying the resulting procedure. The result will be aversion of SUbSt that does not need SUbSt - | N-
synbol - expr essi on. Thistechniqueis called inlining, and is used by optimizing compilers.Exer cise
1.12 [* *] In our example, we began by eliminating the Kleene star in the grammar for <s-list>. When a
production is expressed using Kleene star, often the recursion can be expressed using map. Write Subst
following the original grammar by using map.

not at e-dept h

Our next exampleisnot at e- dept h. This procedure takes an s-list and produces alist similar to
the original, except that each symbol is replaced by alist containing the symbol and a number
equal to the depth at which the symbol appearsin the original s-list. A symbol appearing at the top
level of the s-list isat depth O; a symbol appearing in an immediate sublist is at depth 1, etc. For
example,

> (notate-depth "(a (b () c) ((d)) e))
((a 0) ((b1) () (c 1)) (((d2))) (e 0))

To solve this problem, we need to distinguish the s-list that is the input from an s-list that may
appear as asublist. Thus our grammar will be

{top-level) n== (s-list)
(s-list) u= |

== ({symbol-expression) . {s-list))
isymbol-expression) = {symbol} | {s-list)

We will have three procedures: not at e- dept h, not at e-depth-in-s-1i st and

not at e- dept h-i n- synbol - expr essi on, corresponding to the three nonterminals. The
latter two procedures will take an additional parameter d that indicates what depth we are at.
Initially, we are at depth O.

(define notate-depth (lanbda (slist) (notate-depth-in-s-list slist 0)))
(define notate-depth-in-s-list (lanbda (slist d) o))



(define notate-depth-in-synbol -expression (lanbda (se d) ..2))

To notate an s-list a depth d, we ssimply notate each of its elements:

(define notate-depth-in-s-list
(lambda (slist d)
(if (null? slist)
Y

(cons
(notate-depth-in-symbol -expression (car slist) d)
{notate-depth-in-s-list (cdr slist) d)))))

To notate a symbol-expression se at depth d, wefirst ask if se isasymbol. If so, we can return
(l'ist se d).If seisinstead alist, then we need to notate its elements. But those elements are
now at depth d+1:

(define notat e-dept h-i n-synbol -
expression (lanmbda (se d) (if (synbol? se) (list se d) (not at e-
depth-in-s-list se (+d 1)))))

This technique of passing additional arguments to keep track of the context in which a procedureis
invoked is extremely useful. Such arguments are called inherited attributes. Our subst example
uses a rudimentary form of this technique by passing the extra parameters ol d and new, but those
parameters do not change as the procedure recurs.

Exercise 1.13 [ * *] Rewrite the grammar for <s-list> to use Kleene star, and rewrite not at e- dept h-

i n-s-1ist usngnap.

1.2.3 Other Patterns of Recursion

Sometimes the grammar for the input may not provide sufficient structure for the program. Asan
example, we consider the problem of summing all the valuesin a vector.

If we were summing the valuesin alist, we could follow the grammar to recur on the cdr of the list
to get aprocedure like



(define list-
sum (| anmbda (Il on) (if (null? lon) 0 (+ (car lon) (list-
sum (cdr lon))))))

But it is not possible to proceed in this way with vectors, because they do not decompose as readily.

Sometimes the best way to solve a problem isto solve a more genera problem and use it to solve the origina
problem as a specia case. For the vector sum problem, since we cannot decompose vectors, we generalize the
problem to compute the sum of part of the vector. We definepar ti al - vect or - sum which takes a vector
of numbers, von, and a number, n, and returns the sum of the first n valuesinvon.

(define partial-vector-sum (|anbda (von n) (if (zero? n) 0 (+ (vector-
ref von (- n 1)) (partial -vector-sumvon (- n 1))))))

Since n decreases steadily to zero, a proof of correctness for this program would proceed by induction on n. It
isnow a simple matter to solve our original problem

(define vector-sum (Ilanbda (von) (partial -vector-sumvon (vector-Ilength von))))

Observe that von does not change. We can take advantage of this by rewriting the programusing | et r ec:

(define vector-sum (lanbda (von) (letrec ((partial -
sum (lambda (n) (if (zero? n) 0 (+ (vector-
ref von (- n 1)) (partial-sum (- n 1))))))) (partial -sum (vector-

I ength von)))))



Exercise 1.14 [ * *] Given the assumption 0 < N < length(von), provethat parti al - vect or - sum
is correct.

There are many other situationsin which it may be helpful or necessary to introduce auxiliary
variables or procedures to solve a problem. Always feel free to do so.

1.2.4 Exercises

Getting the knack of writing recursive programs involves practice. Thus we conclude this section
with a number of exercises.

Exercise 1.15 [ *] Define, test, and debug the following procedures. Assume that S isany symbol, N isa
nonnegative integer, | St isalist, V isavector, | 0S isalist of symbols, VOS isavector of symbols,

sl i st isanslist, and X isany object; and smilarly S1 isasymbol, | 0S2 isalist of symbols, X 1 isan
object, etc. Also assume that pr ed is a predicate, that is, a procedure that takes any Scheme object and

returns either #t or #f . Make no other assumptions about the data unless further restrictions are given as part
of aparticular problem. For these exercises, there is no need to check that the input matches the description;
for each procedure, assume that its input values are members of the specified sets.

To test these procedures, at the very minimum try all of the given examples. Also use other examples to test
these procedures, since the given examples are not adequate to reveal all possible errors.

1. (dupl e n x) returnsalist containing n copies of x.

> (duple 2 3)(3 3)> (duple 4 '(ho ho))((ho ho) (ho ho) (ho ho) (ho ho))
> (duple 0 ' (blah))()

2.(invert |st),wherel st isalist of 2-lists (lists of length two), returns alist with each 2-
list reversed.

> (invert "((a 1) (a2 (b1 (b2))((1a (2a) (1b) (2h))

3.(filter-in pred | st) returnsthelist of those elementsin| st that satisfy the predicate
pred.

> (filter-in nunmber? '(a 2 (1 3) b 7))(2 7)> (filter-
in symbol? '(a (b c) 17 foo))(a foo)



4. (every? pred |st) returns#f if any element of | st fallsto satisfy pr ed, and returns
#t otherwise.

> (every? nunber? '(a b c 3 e))#f> (every? nunber? '(1 2 3 5 4))#t

5.(exists? pred | st) returns#t if any element of | st satisfies pr ed, and returns #f
otherwise.

> (exists? nunber? '(a b c 3 e))#t> (exists? nunber? '(a b ¢c d e))#f

6. (vector-index pred v) returnsthe zero-based index of the first element of v that
satisfies the predicate pr ed, or #f if no element of v satisfies pr ed.

> (vector-index (lanbda (x) (eqv? x 'c)) "# (a b c d))2> (vector-
ref '# (a b c) (vector-index (lanbda (x) (eqv? x 'b)) "# (a b c)))b

7.(list-set Ist n x) returnsalistlikel st , except that the n-th element, using zero-
based indexing, iSX.

> (list-set "(abcd) 2'(12)(ab (12 d>(list-ref (list-
set '"(abcd) 3'(1510)) 3)(1 5 10)

8. (product 1 o0sl | o0s2) returnsalist of 2-liststhat represents the Cartesian product of
| 0s1 and| 0s2. The 2-lists may appear in any order.

> (product "(a b c) "(xy))((ax) (ay) (bx) (by) (cx) (cy))
9. (down | st) wraps parentheses around each top-level element of | st .

> (down '(1 2 3))((1) (2) (3))> (down '((a) (fine) (idea)))
(((a)) ((fine)) ((idea)))> (down '(a (nore (conplicated)) object))
((a) ((rmore (complicated))) (object))

10. (vect or - append-1list v | st) returnsanew vector with the elements of | st attached
to theend of v. Do thiswithout usingvect or->li st, |ist->vector,andappend.

> (vector-append-list "# (1 2 3) '"(4 5))#(1 2 3 45)



Exercise 1.16 [ * *]

1. (up | st) removesapair of parentheses from each top-level element of | st . If atop-level
element isnot aligt, itisincluded in the result, asis. Thevaueof (up (down | st)) is
equivalentto| st , but (down (up | st)) isnotnecessarily | st .

> (up "((12) (34)))(1234)>(up ' ((x (y)) 2))(x (y) 2)

2. (swapper sl s2 slist) retunsalistthesameassl i st, but with all occurrencesof s1
replaced by s2 and all occurrences of s2 replaced by s1.

> (swapper 'a 'd "(abcd)(dbc a)>(swapper 'a 'd '(ad () c d))
(d a () ca)>(swapper "x "y "((x) y (z (x))))((y) x (z (y)))

3.(count-occurrences s slist) returnsthe number of occurrencesof s insl i st .

> (count-occurrences 'x "((f x) y (((x z) x))))3> (count-
occurrences 'x "((f x) y (((x z) () x))))3> (count-
occurrences 'w ' ((f x) y (((x z) x))))O0

4. (flatten slist) returnsalist of the symbolscontainedinsl i st inthe order in which
they occur when sl i st isprinted. Intuitively, f | at t en removes all the inner parentheses from
its argument.

> (flatten "(a b c))(a b c)> (flatten " ((a) () (b ()) () (c)))(a b c)
> (flatten "((a b) c (((d)) e)))(abcde)>(flatten "(a b (() (c))))(a b c)

5. (nmerge lonl | on2),wherel onl and| on2 arelists of numbersthat are sorted in
ascending order, returns a sorted list of all the numbersinl onl and| on2.

> (merge '"(14) '(128))(11248)>(nmerge '(35 62 81 90 91) '(3 83 85 90))
(3 35 62 81 83 85 90 90 91)



Exercise 1.17 [ * % %]

1. (path n bst),wherenisanumber and bst isabinary search tree that contains the number n, returnsalist of | ef t sandr i ght sshowing how to
find the node containing n. If n isfound at the root, it returns the empty list.

> (path 17 ' (14 (7 () (12 () ())) (26 (20 (17 () ()) () (31.0) ON)
(right left left)

2.(sort 1on) returnsalist of the elementsof | on inincreasing order.

> (sort '(82523))(22358)

3.(sort predicate | on) returnsalist of elements sorted by the predicate.

> (sort <'(82523))(22358)>(sort >'(825223)(85322)
Exercise 1.18 [ * * *] This exercise has three parts. Work them in order.

1. Define the procedure conpose such that (conpose pl p2),wherepl and p2 are procedures of one argument, returns the composition of these
procedures, specified by this equation:

((conpose pl p2) x) = (pl (p2 x))> ((conpose car cdr) '(a b c d))b
2.(caré&cdr s slist errval ue) returnsan expression that, when evaluated, produces the code for a procedure that takes a list with the same
structureas sl i st and returns the value in the same position as the leftmost occurrence of s insl i st . If sdoesnot occurinsl i st,thenerrval ueis

returned. Do this so that it generates procedure compositions.

> (caré&cdr 'a '(a b c) 'fail)car> (car&cdr 'c '(a b c) 'fail)(conpose car (conpose cdr cdr))
> (car&cdr 'dog '(cat lion (fish dog ()) pig) 'fail)(conpose car (conpose cdr (compose car (conmpose cdr cdr))))
> (caré&cdr 'a '(b c) 'fail)fail

3. Define car &cdr 2, which behaves like car &cdr , but does not use conpose in its output.



1.3 Scoping and Binding of Variables

We now apply these ideas to a group of important programming language concepts. the scoping
and binding of variables.

In most programming languages, variables may appear in two different ways:. as references or as
declarations. A variable reference is a use of the variable. For example, in

(f xy)

al thevariables, f, x, and y, appear as references. However, in
(lambda (x) ...)

or

(let ((Xx ...)) ...)

the occurrence of x isadeclaration: it introduces the variable as a name for some value. In the
| ambda expression, the value of the variable will be supplied when the procedureis caled; in the
| et expression the value of the variable is obtained from the value of the expression in the first

We sometimes call the value named by avariable its denotation. The denotation must come from
some declaration, and we say that the variable reference is bound by that declaration, or that it
refersto that declaration.

Declarations in most programming languages have a limited scope, so that the same variable name
may be used for different purposesin different parts of a program. For example, we have
repeatedly used | st asaformal parameter, and in each case its scope was limited to the body of
the corresponding lambda expression.

Every programming language must have some rules to determine the declaration to which each
variable reference refers. Theserules are typically called binding rules.

In Scheme, as in most other languages, the relation between a variable reference and the
declaration to which it refersis a static property: it can be determined by analyzing the text of a
program aone, without knowing the actual values to which the variable is bound. We say that
such languages are statically scoped. By contrast, in some languages, the declaration to which a
variable reference refers cannot be determined until the program is executed; such properties are
called dynamic.



It isimportant to know whether a property is static, because static properties can be analyzed by a
compiler to detect errors before run time and to



improve the efficiency of object code. They are also usually easier for programmers to analyze,
and this makes programs easier to understand.

In this section we study a number of static properties related to variable binding. We do thisin the
simplest possible context: the language of lambda cal culus expressions, which we defined in
section 1.1. Recall that this language consists only of variable references, | anbda expressions
with asingle formal parameter, and procedure calls. It is defined by the grammar

{expression) == (identifier)
n= (lambda ((identifier)) (expression))
m= ({expression) (expression))
The binding rule for lambda cal culus expressions is the following:

Definition 1.3.1 (Binding Rule for Lambda Calculus Expressions)

In (I anbda (<identifier>) <expression>), the occurrence of <identifier> is a declaration that
binds all occurrences of that variable in <expression> unless some intervening declaration of the
same variable occurs.

We spend the rest of this section exploring the consequences of this definition.

1.3.1 Free and Bound Variables

The first question one can ask about a variable and an expression is whether the variable occurs
free or bound in that expression.

Definition 1.3.2 (Occurs Free, Occurs Bound)

A variable x occursfreein E if and only if there is some use of x in E that is not bound by any
declaration of x in E.

A variable x occurs bound in an expression E if and only if thereissome use of x in E that is
bound by a declaration of xin E.

Thusin
[ (lambda (%) x) ¥) (]

X occurs bound, since the second occurrence of x is areference bound by the first occurrence of x
(adeclaration). Similarly, y occurs free because its sole occurrence in this expression is not bound



by any declaration of y.



A variable reference that is free in one context, such as (*), may be bound in alarger surrounding
context. For example, if (*) were embedded in the body of alambda calculus expression with
formal parameter y, asin

(lambda (y)
{(lambda (x) x} ¥)] (++)

then the reference to y on the second line is bound by the declaration of the formal parameter y on
thefirst line.

The value of an expression depends only on the values associated with the variables that occur
free within the expression. The context that surrounds the expression must provide these values.
For example, the value of the expression ( (| anbda (x) x) y) onthesecond lineof (**)
depends only on the denotation of its single free variable y. The denotation of y comes from its
associated declaration, the declaration of the formal parameter y on the first line. Hence the value
of y will come from the argument to the procedure (**).

Conversely, the value of an expression isindependent of the bindings of variables that do not
occur freein the expression. For example, the value of (*) isindependent of the denotation of x at
thetimethat (*) is evaluated. By the time the free occurrence of x inthe body of (| anbda (x)
X) isevaluated, it will have anew binding (in (*), the value associated with y).

Therefore, the meaning of an expression with no free variablesis fixed. For instance, the meaning

of (I anbda (x) x) isawaysthesame: it istheidentity function that returns whatever value it
is passed. Other lambda cal culus expressions without free variables also have fixed meanings. For

example, the value of

(lanbda (f) (lanbda (x) (f x)))

isa procedure that takes a procedure, f , and returns a procedure that takes avaue x, appliesf to
it, and returns the result. Lambda cal culus expressions without free variables are called
combinators. Many combinators, such as the identity function and the application combinator
above, are useful programming tools.

We formulated definition 1.3.2 for any programming language; for the language of lambda
calculus expressions, we can make a much more specific definition.



Definition 1.3.3 (Occurs Free, Occurs Bound in Lambda Calculus Expressions)

A variable x occurs free in a lambda calculus expression E if and only if

1. Eisavariablereference and E isthe same as x; or

2. Eisof theform (I anbda (y) E'), wherey is different fromx and x occursfreein E'; or
3. Eisof the form (E1 E2) and x occurs freein E1 or E2.

A variable x occurs bound in a lambda cal culus expression E if and only if

1. Eisof theform (I anbda (y) E'), where x occurs bound in E' or x and y are the same variable
and y occursfreein E'; or

2. Eisof the form (E1 E2) and x occurs bound in E1 or E2.

This definition says that x can occur bound in E only if Eisal anbda- expression or an
application; hence no variable occurs bound in an expression consisting of just asingle variable.

From this definition, we can easily write proceduresoccur s-f r ee? and occur s- bound?
that take a variable and an expression and determine whether the variable occurs free or bound in
the expression (figure 1.1). In each one we do a case analysis of the expression to determine which
clause of the definition applies, and recur when the definition tells us to do so.

The proceduresoccur s-free? and occur s- bound? are not as readable as they might be. It
ishard to tell, for example, that ( caadr exp) refersto the declaration of avariablein a

| anmbda expression, or that (caddr exp) refersto its body. We show how to improve this
situation considerably in section 2.2.2.

Exercise 1.19 [ * *] Write aprocedure f r ee- var s that takes alist structure representing an expression in
the lambda calculus syntax given above and returns a set (alist without duplicates) of al the variables that
occur free in the expression. Similarly, write aprocedure bound- var s that returns a set of al the
variables that occur bound in its argument.

Exercise 1.20 [ *#] Give an example of alambda calculus expression in which a variable occurs free but which
has avalue that is independent of the value of the free variable.

Exercise 1.21 [ *#] Give an example of alambda calculus expression in which the same variable occurs both
bound and free.



(define occurs-

free? (lanbda (var exp) (cond ((synmbol ? exp) (eqv? exp var)) ((eqv? (car exp) 'lanbda) (and (not (eqv? (caadr exp) var)) (occurs-
free? var (caddr exp)))) (el se (or (occurs-free? var (car exp)) (occurs-free? var (cadr exp)))))))(define occurs-

bound? (Il anbda (var exp) (cond ((synbol ? exp) #f) ((eqv? (car exp) 'lanbda) (or (occurs-

bound? var (caddr exp)) (and (eqv? (caadr exp) var) (occurs-free? var (caddr exp))))) (el se (or (occurs-

bound? var (car exp)) (occurs-bound? var (cadr exp)))))))

Figurel.10ccur s-free? andoccur s- bound?

Exercise 1.22 [ *] Scheme| anbda expressions may have any number of formal parameters, and Scheme procedure calls may have any number of operands. Modify the formal definitions of occurs free and occurs bound to allow
| anbda expressions with any number of formal parameters and procedure calls with any number of operands. Then modify the proceduresoccur s- f r ee? andoccur s- bound? to follow these new definitions.

Exercise 1.23 [ *] Extend the formal definitions of occurs free and occurs bound to include i f expressions.
Exercise 1.24 [ * *] Extend the formal definitions of occurs free and occurs bound to include Schemel et and| et * expressions.
Exercise 1.25 [ *] Extend the formal definitions of occurs free and occurs bound to include Scheme quotations (expressions of the form (qUOt € <datum>)).

Exercise 1.26 [ * *] Extend the formal definitions of occurs free and occurs bound to include Scheme assignment ( Set ) expressions.



1.3.2 Scope and L exical Address.
The next problem is to associate with each variable reference the declaration to which it refers. It turns out to be easier to think about the reverse problem: given a declaration, which variable references refer to it?
Typically, the binding rules of alanguage associate with each declaration of avariable aregion of the program within which the declaration is effective. For example, in the Scheme expression
(lanbda (x) ...)
the region for x isthe body of the| anbda expression, and in atop-level definition
(define x ...)
the region is the whole program.
Thisis not the entire story, however, because many modern languages, including Scheme, allow regions to be nested within each other, as when one lambda expression appears in the body of another. Such languages are said to be block-structured, and the regions are sometimes called blocks.
For example, in Scheme the body of the| ambda expression above might contain another declaration of x. In this case the inner declaration takes precedence over the outer one. Consider

> (define x i call this x1  (lanbda (x) i call this x2 (map (lanbda (x) i call this x3 (+ x 1) i refers to x3 ) i refers to x2> (x (12 3)) i refers to x1

(234)
Here the expression (+ x 1) iswithin the region of all three declarations of x. It therefore takes its binding from the innermost declaration of x, the one on the fourth line. Block-structured |anguages whose scope rules work in this way are said to use lexical binding.

'We define the scope of avariable declaration to be the text within which references to the variable refer to the declaration. Thus the scope of a declaration is the region of text associated with the declaration, excluding any inner regions associated with declarations that use the same variable name. We say that the inner declaration of x shadows the outer declarations of x, or



that the inner declaration creates a hole in the scope of the outer one. Alternatively, we may speak of the declarations that
arevisible at the point of avariable reference, meaning those that contain the variable reference within their scope.

The declaration of avariable v has a scope that includes all referencesto v that occur free in the region associated with
the declaration. Those references to v that occur bound in the region associated with its declaration are shadowed by
inner declarations.

Applying this to the preceding example, the region of the x declared on the first line is the read-eval-print loop's top
level, which includes the body of the definition: however, its scope does not include the body of the defined procedure,
since x does not occur freein the procedure (| anbda (x) . ..).Thescope of theformal parameter x in the fourth
lineisthe lambda expression'sbody, (+ x 1).Thisformal parameter creates a hole in the scope of the formal
parameter x in the second line. The scope of the x in the second line includes the reference to x as the second argument
to map, but not the reference to x asthe first argument to +. The inner declarations of x shadow the outer declarations of
X.

In alanguage with lexical binding, there is a simple algorithm for determining the declaration to which avariable
reference refers. Search the regions enclosing the reference, starting with the innermost. As each successively larger
region is encountered, check whether a declaration of the given variable is associated with the block. If oneisfound, it is
the declaration of the variable. If not, proceed to the next enclosing region. If the outer-most (top-level or global) region
is reached and no declaration is found, the variable reference is free.

Exercise 1.27 [*] In the following expressions, draw an arrow from each variable reference to its associated formal parameter
declaration.

(lambda (x) (Il anbda (y) ((lambda (x) (xy)) X)))
(lambda (z) ((lanmbda (a b c) (a (lanbda (a) (+ ac)) b)) (lanbda (f x) (f (z x)))))



(lambda (x)
(lambda (y)

((lambda (x)
x vyl

(lambda (z)
{(lambda (a b ¢)

(a (lambda (a) [(+ a ¢)]) b)

(lambda (£ x) [{£ (z x))|)) )

L—

Figure 1.2 Contour diagrams

Exercise 1.28 [ *] Repeat the above exercise with programs written in a block-structured language, other than
Scheme.

It is sometimes more helpful to picture the borders of regions, rather than the interiors of regions.
These borders are called contours. For example, the contours in the preceding exercise can be
drawn asin figure 1.2.

Execution of the scoping algorithm may then be viewed as a journey outward from avariable
reference. In thisjourney a number of contours may be crossed before arriving at the associated
declaration. The number of contours crossed is called the lexical (or static) depth of the variable
reference. It is customary to use "zero-based indexing," thereby not counting the last contour
crossed. For example, in

(lambda (x y) ((lanmbda (a) (x (ay))) x)

the reference to x on the last line and the reference to a have lexical depth zero, while the
referencesto x andy in the third line have lexical depth one.

The declarations associated with a region may be numbered in the order of their appearance in the
text. Each variable reference may then be associated



with two numbers: its lexical depth and its position, again using zero-based indexing, of its declaration
in the declaring contour (its declaration position). Taken together, these two numbers are the variable
reference's lexical address.

To illustrate lexical addresses, we may replace every variable reference v in an expression by
(v:d p)
wheredisitslexical depth and p isits declaration position. The above example then becomes
(lanbda (x y) ((lanmbda (a) ((x 210 ((a: 00 (y:11))) (x:00))

Since the lexical address completely specifies each variable reference, variable names are then
superfluous! Thus variable references could be replaced by expressions of the form (: d p), and formal
parameter lists could be replaced by their length, asin

(lambda 2 ((lanmbda 1 ((: 10) ((: 00) (: 11)))) (:00)))

Names for lexically-bound variables are certainly a great help in writing and understanding programs,
but they are not necessary in executing programs.

Exercise 1.29 [ #] What is wrong with the following lexical-address expression?
(lambda (a) (lanbda (a) (a: 10)))

Exercise 1.30 [ *#] Write a Scheme expression that is equivalent to the following lexical-address expression from
which variable names have been removed.

(lanbda 1 (Il anbda 1 (: 10)))

Compilersroutinely calculate the lexical address of each variable reference. Once this has been done,
the variable names may be discarded unless they are required to provide debugging information.



Exercise 1.31 [* *] Consider the subset of Scheme specified by the BNF rules

{expression} == {identifier)

w= {if {expression) {expression} (expression})
(lambda ({{identifier}}"} {expression})
{{{expression}}*)

Writeaprocedure| exi cal - addr ess that takes any expression and returns the expression with every variable reference v replaced by alist (v: d p), asabove. If the variable reference v is free, produce thelist (v f r ee) instead.

> (lexical-
address ' (lanbda (a b c) (if (eqv? b c) ((lambda (c) (cons a c)) a) b)))
(lanbda (a b c) (if ((eqv? free) (b: 01) (c: 0 2)) ((lanbda (c) ((cons free) (a: 1 0) (c: 00))) (a: 00)) (b: 01)))

Exercise 1.32 [ * *] Write the procedure un- | exi cal - addr ess, which takes lexical-address expressions with formal parameter lists and with variable references of the form (: d p), or (vf I e€) and returns an equivalent expression formed by substituting standard
variable references for the lexical-address information, or #f if no such expression exists.

> (un-1exical -address ' (| anbda (a) (lanbda (b c) ((: 20) (: 00) (: 01)))))(lanbda (a) (lanmbda (b c) (a b c)))> (un-lexical-
address ' (lanbda (a) (lanmbda (a) (: 1 0))))#f

Exercise 1.33 [ * *] Some languages do not allow an inner declaration to declare a variable already declared in an outer declaration. Write a procedure that takes alambda cal culus expression and checks to seeif it contains such aredeclaration.

Further Reading

Scheme was introduced in (Sussman & Steele, 1975). Its development is recorded in (Steele & Sussman, 1978; Clinger et al., 1985; Rees et al., 1986; Clinger et al., 1991; Kelsey et al., 1998). The standard definitions of Scheme



are provided by the |IEEE standard (1991) and the Reviseds Report on the Algorithmic Language
Scheme (Kelsey et al., 1998). (Dybvig, 1987; 1996) provides a short introduction to Scheme that
includes a number of insightful examples.

Those new to recursive programming and symbolic computation might look at The Little Schemer
(Friedman & Felleisen, 1996), or The Little MLer (Felleisen & Friedman, 1996), or for the more
historically-minded, The Little LISPer (Friedman, 1974).

The lambda calculus was introduced in (Church, 1941) to study mathematical logic. Introductory
treatments of the lambda calculus may be found in (Hankin, 1994), (Peyton Jones, 1987), or (Stoy,
1977). (Barendregt, 1981; 1991) provides an encyclopedic reference.



2 Data Abstraction

2.1 Specifying Data via I nterfaces

Every time we decide to represent a certain set of quantities in a particular way, we are defining a
new data type: the data type whose values are those representations and whose operations are the
procedures that manipulate those entities.

The representation of these entities is often complex, so we do not want to be concerned with their
details when we can avoid them. We may also decide to change the representation of the data. The
most efficient representation is often alot more difficult to implement, so we may wish to develop
asimple implementation first and only change to a more efficient representation if it proves
critical to the overall performance of a system. If we decide to change the representation of some
datafor any reason, we must be able to locate all parts of a program that are dependent on the
representation. Thisis accomplished using the technique of data abstraction.

Data abstraction divides a data type into two pieces: an interface and an implementation. The
interface tells us what the data of the type represents, what the operations on the data are, and what
properties these operations may be relied on to have. The implementation provides a specific
representation of the data and code for the operations that makes use of the specific data
representation.

A datatypethat is abstract in thisway is said to be an abstract data type. The rest of the program,
the client of the data type, manipulates the new data only through the operations specified in the
interface. Thus if we wish to change the representation of the data, all we must do is change the
implementation of the operationsin the interface.



Thisisafamiliar idea: most of the time, we don't care how integers are actually represented inside
the machine. Our only concern is that we can perform the arithmetic operations reliably. Similarly,
afile descriptor in an operating system is a complex entity, but when we write programs we care
only that we can invoke procedures that perform the open, close, read, and other typical operations
on these files. The only time we need to worry about the representation of file descriptorsis when
we are modifying the implementation of afile system. When the client code does not rely on the
representation of the values in the data type, manipulating them only through the proceduresin the
interface, we say that the code is representation-independent.

All the knowledge about how the data is represented must therefore reside in the code of the
implementation. The most important part of an implementation is the specification of how the data

is represented. We use the notation | *'! for "the representation of data v".

To make this clearer, let us consider a simple example: the data type of the nonnegative integers.
The data to be represented are the nonnegative integers. The interface isto consist of four entities:
aconstant zer o and three procedures, i szer 0?, succ, and pr ed. Of course, not just any
value will be acceptable for zer o, nor will any procedure be acceptable as an implementation of

I szero?, succ,orpred. We can specify the intended behavior of these procedures as
follows:

(igzara? [rt-i' _ #t =0
\1BZeXo; Tl #f n#E0

(suce [n]) = [u+1] (n>0)
(pred [n+1]) = [n] (n = 0)

This specification does not dictate how these nonnegative integers are to be represented. It
requires only that these procedures conspire to produce the specified behavior. Thus, zer o must
be bound to the representation of 0. The procedure succ, given the representation of the integer n,
must return the representation of the integer n + 1, and so on. The specification says nothing about
(pred zero), sounder this specification any behavior would be acceptable.

We can now write client programs that manipulate nonnegative integers, and we are guaranteed
that they will get correct answers, no matter what representation isin use. For example,



(define plus (lanbda (X Y) (if (iszero? X) Y (succ (plus (pred X) Y)))))

will satisfy (P1us [x] [¥[) =[x+ ¥] homatter what implementation of the nonnegative integers we use.

Thiswould all betrivial if we did not have choices about the representation. Let us consider three possible
representations:

1. Unary representation: In the unary representation, the nonnegative integer n is represented by alist of n
#t's. Thus, O isrepresented by () , 1isrepresented by (#t ) , 2 isrepresented by (#t #t ), etc. Wecan
define this representation inductively by:

0l=10n

[141] = (cons #t [n])

In this representation, we can satisfy the specification by writing

(define zero '())(define iszero? null?)(define succ (lanbda (n) (cons #t n)))
(define pred cdr)

2. Scheme number representation: In this representation, we simply use Scheme's internal representation of

numbers (which might itself be quite complicated!). We let [1] pe the Scheme integer n, and define the four
required entities by

(define zero 0)(define iszero? zero?)(define succ (lanbda (n) (+ n 1)))
(define pred (lanbda (n) (- n 1)))

3. Bignum representation: In the bignum representation, numbers are represented in base N, for some large
integer N. The representation becomes a list consisting of numbers between 0 and N — 1 (sometimes called
bigits rather than digits). This representation makes it easy to represent integers



much larger than can be represented in a machine word. For our purposes, it is convenient to keep
the list with least-significant bigit first. We can define the representation inductively by

m={ 0 =0
— loong + |-r_|l-|:' = !F_i'-.,_.l' "'-J"__ U i F o _i"'._-r

[ - h 1 1) — 4 .
S0if N=16, then 1331 = (1 2) gng [258] = (2 0 1) gnce258=1x 162+ 0 x 161 + 2 x 160.

Exercise 2.1 [*] Implement the four required operations for bigits. Then use it to calculate the factorial of 10.
How does the execution time vary as this argument changes? How does the execution time vary as the base
changes? Explain why.

Exercise 2.2 [ * *] Analyze each of these proposed representations critically. To what extent do they succeed
or fail in satisfying the specification of the data type?

None of these implementations enforces data abstraction. There is nothing to prevent a client
program from looking at the representation and determining whether it isalist or a Scheme
integer. On the other hand, some languages provide direct support for data abstractions: they allow
the programmer to create new interfaces and check that the new datais only manipulated through
the procedures in the interface. If the representation of atype is hidden, so it cannot be exposed by
any operation (including printing), the type is said to be opaque. Otherwisg, it issaid to be
transparent.

Scheme does not provide a standard mechanism for creating new opaque types. Thus we settle for
an intermediate level of abstraction: we will define interfaces and rely on the writer of the client
program to be discreet and use only the proceduresin the interfaces.

2.2 An Abstraction for Inductive Data Types

In chapter 1, we saw many examples of inductively defined sets of data. We will see many more
such setsin the future, so it will be useful to have a standard interface for dealing with such data
types. Thisinterface is specified by the form def i ne- dat at ype.

2.2.1 defi ne- dat at ype and cases
Let us consider the definition of binary trees from section 1.1:

(bintree) == {(number) | ((symbol) (bintree) (bintree))



This grammar defines the elements of <bintree> as Scheme values. But thisis a particular
representation choice. What should the interface for this data type look like? To manipulate values
of this datatype we will need the following:

» constructors that allow us to build each kind of binary tree,
* apredicate that teststo seeif avalueis arepresentation of abinary tree, and

» some way of determining, given abinary tree, whether it isaleaf or an interior node, and of
extracting its components.

In this section we introduce atool for specifying such inductive data types. This tool also provides
a standard representation for these data types, including a standard method for discriminating
between the alternatives and extracting the data in them.

Thistool iscalled def i ne- dat at ype. Before we consider the general properties of thistool,
we demonstrate its use by specifying the data type of binary trees:

(define-datatype bintree bintree? (leaf-
node (datum nunber?)) (interior-
node (key symbol ?) (left bintree?) (right bintree?)))

Thissaysthat abi nt r ee iseither
» al eaf - node consisting of anumber called the dat umof the bi nt r ee or

eani nterior-node consisting of akey thatisasymbol, al eft thatisabi ntree,anda
ri ght thatisalsoabi ntree.

It creates a data type with the following interface:

» al-argument procedure, | eaf - node, for constructing al eaf - node. This procedure testsits
argument with nunber ?; if the argument does not passthis test, an error is reported.

» a3-argument procedure, i nt eri or - node, for buildingani nt eri or - node. This procedure
testsitsfirst argument with synbol ? and its second and third arguments with bi nt r ee? to
ensure that they are appropriate values.



» al-argument predicate bi nt r ee? that when passed al eaf - node or ani nt eri or - node
returns true. For all other arguments, it returns false.

In addition, a new form of case construct (illustrated presently) makes it possible to conveniently
distinguish between the two types of nodes and extract their contents.

We need some terminology before describing def i ne- dat at ype in general. An aggregate
datatype is one that contains values of other types, such asan array or record. An array element is
selected using a numerical index, while arecord element, called afield, is selected viaafield name.

A union type is one whose values are of one or the other of multiple given types. For example, the
type of integers might be viewed as the union of the type of even integers and the type of odd
integers. Values of adiscriminated union type contain a value of one of the union's types and atag
indicating which type the value belongs to.

Scheme values belong to a discriminated union of all the primitive types provided by the Scheme
implementation (such as integer, character, pair, empty list, vector, procedure, and so on). For the
purpose of reasoning about Scheme programs, we may invent other abstract unions. For example,
alistisaunion of just the empty list and pair types.

Inductively defined data types are conveniently represented as a discriminated union of record
types, sometimes called variant records. Each record type is called a variant of the type. The
def i ne- dat at ype facility isan extension of Scheme that makesit easy to define and use
variant records.

A def i ne- dat at ype declaration, which can only appear at the top-level of aprogram, hasthe
general form

(def i ne- dat at ype type-name type-predicate-name { (variant-name{ (field-name
predicate) }*)}*)

This creates a variant-record data type, named type-name. Each variant has a variant-name and
zero or more fields, each with its own field-name and associated predicate. No two types may
have the same name and no two variants, even those belonging to different types, may have the
same name. Also, type names cannot be used as variant names. Each field predicate must be a
Scheme predicate: a procedure of one argument that is used to assure that the field's values are
valid.

For each variant a new procedure is created that is used to create data values belonging to that
variant. These procedures are called constructors and are named after their variants. If there are n
fieldsin avariant, its constructor takes n arguments, tests each of them with the associated
predicate, and



returns a new value of the given variant with the i-th field containing the i-th argument value.
The type-predicate-name is bound to a predicate. This predicate determinesif its argument is a value belonging to the named type.

A record can be defined as a data type with a single variant. To distinguish data types with only one variant, we use a naming convention. When thereis asingle variant, the
constructor is named a-type-name or an-type-name; otherwise, the constructors have names like variant-description -type-name.

Datatypesbuilt by def i ne- dat at ype may be mutually recursive. For example, consider the grammar for <s-list> from section 1.1:

(s-lisk) m= ({{symbol-expression) }*)
{symbol-expression) == {symbol) | {s-list)

The datain an s-list could be represented by the datatypes- | i st defined by:

(define-datatype s-list s-list? (enpty-s-list) (non-enpty-s-1ist (first synbol -exp?) (rest s-list?)))(define-datatype synbol -
exp synbol -exp? (synbol - synbol - exp (data synmbol ?)) (s-list-synbol -exp (data s-list?)))

Thedatatypes- 1 i st givesits own representation of listsby using (enpt y-s-1i st) andnon-enpty-s-1i st inplaceof () and cons; if we wanted to specify
that Scheme lists be used instead, we could have written

(define-datatype s-list s-list? (an-s-list (data (list-of symbol-exp?))))(define Iist-
of (lanmbda (pred) (lanmbda (val) (or (null? val) (and (pair? val) (pred (car val)) ((list-
of pred) (cdr val)))))))



Here (| i st - of pred) builds apredicate that teststo seeif itsargument isalist, and that each of
its elements satisfies pred.

Exercise 2.3[*] Implement vect or - of , whichislikel i st - of , but works for vectors instead of lists.
Do thiswithout usingvect or - >| i st .

We use the form cases to determine the variant to which an object of a data type belongs, and to
extract its components. To illustrate this form, consider again the set of binary trees, defined by

(define-datatype bintree bintree? (leaf-
node (datum nunber?)) (interior-
node (key symbol ?) (left bintree?) (right bintree?)))

We wish to find the sum of the integersin the leaves of such atree. We can do thiswith cases
by writing:

(define leaf-sum (lanbda (tree) (cases bhintree tree (I eaf -
node (datum) datun) (interior-node (key left right) (+ (leaf-
sumleft) (leaf-sumright))))))

The procedure | eaf - sumtakesabi nt r ee that it referstoast r ee. The( cases

bi ntree ...) expression branches depending upon which variant of bi nt r ee thevaue
t r ee belongsto. When a branch is taken, each of the variablesin the branch is bound to the
corresponding field of t r ee, and the expression in the branch is evaluated.

To see how thisworks, assumethat t r ee isbound to atree that was built by i nt eri or - node.
For thishinding of t r ee, thei nt eri or - node branch would be selected, | ef t would be
bound to the left subtree, r i ght would be bound to the right subtree, and the expression ( +
(leaf-sumleft) (|l eaf-sumright)) wouldbeevaluated. Therecursivecalstol eaf -
sumwould work similarly to finish the problem.

Theform cases bindsits variables positionally: the i-th variable is bound to the value in the i-th
field. So we could just aswell have written (| eaf - node (n) n) instead of (| eaf - node
(datunm) datun), etc.



Exercise 2.4 [*] Implementabi nt ree-t 0- | i St procedure for binary trees, so that ( bi nt r ee-

to-list (interior-node 'a (|leaf-node 3) (leaf-node 4))) retunsthe
list

(interior-node a (leaf-node 3) (leaf-node 4))

Exercise25[**] Usecases to wite max-interior,whichtakesabinary tree of numbers
with at least one interior node and returns the symbol associated with an interior node with amaximal leaf sum.

> (define tree-a (interior-node 'a (leaf-node 2) (leaf-node 3)))
> (define tree-b (interior-node 'b (leaf-node -1) tree-a))
> (define tree-c (interior-node 'c tree-b (leaf-node 1)))> (nax-

interior tree-b)a> (max-interior tree-c)c

Thelast invocation of max- i nt eri or might aso have returned a, since both the a and ¢ nodes
have aleaf sum of 5.

The general syntax of cases is
(cases type-name expression {(variant-name ({field-name}*) consequent)}* (el se default))

The form specifies the type, the expression yielding the value to be examined, and a sequence of
clauses. Each clause is labeled with the name of avariant of the given type and the names of its
fields. The el se clauseisoptional. First, expression is evaluated, resulting in some value v of
type-name. If visavariant of variant-name, then the corresponding clause is selected. Each of the
field-names is bound to the value of the corresponding field of v. Then the consequent is evaluated
within the scope of these bindings and its value returned. If v is not one of the variants, and an

el se clause has been specified, default is evaluated and its value returned. If thereisno el se
clause, then there must be a clause for every variant of that data type.

Theform def i ne- dat at ype provides a convenient way of defining an inductive data type, but
it is not the only way. Depending on the application, it may be valuable to use a special purpose
representation that is more



compact or efficient, taking advantage of special properties of the data. These advantages are
gained at the expense of having to write the procedures in the interface by hand. We shall see
some examples of thisin section 2.3.

2.2.2 Abstract Syntax and its Representation
In section 1.1 we introduced the language of lambda cal culus expressions, defined by the grammar

{expression) == (identifier)
i= (lambda (({identifier)) (expression})
u= ({expression) {expression) )

Following the pattern we used for <bintree>, we can represent every lambda cal culus expression
using the data type defined by

(define-dat at ype expression expression? (var-

exp (id synbol ?)) (Ianbda-

exp (id synbol ?) (body expression?)) (app-
exp (rator expression?) (rand expression?)))

Herethenamesvar - exp, id, app-exp, rator,andrand abbreviatevariable
expression, identifier, application expression, operator, and operand, respectively.

A BNF definition specifies a particular representation of an inductive data type: one that uses the
particular strings or values generated by the grammar. Such a representation is called concrete
syntax, or external representation.

In order to process such data, we need to convert it to an internal representation. In abstract
syntax, terminals such as parentheses need not be stored, because they convey no information. On
the other hand, we want to make sure that the data structure allows us to determine easily what
kind of lambda cal culus expression it represents, and to extract its components easily. The data
type expr essi on provides exactly this.

To create an abstract syntax for a given concrete syntax, we must name each production of the
concrete syntax and each occurrence of a nonterminal in each production. For the grammar of
lambda cal culus expressions, we can
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Figure 2.1 Abstract syntax treefor (| anbda (x) (f (f x)))

summarize the choices we have made using the following concise notation:

{expression) :

= {identifier)

var-exp (id)]
= (lambda ((identifier)) {(expression))
lambda-exp (id body)

((expression) (expression))
app-exp (rator rand) |

Such notation, which specifies both concrete and abstract syntax, is used throughout this book.

Given the abstract syntax name choices reflected in this notation, it is straightforward to generate
def i ne- dat at ype declarations for the abstract syntax. One declaration is used for each
nonterminal, using the nonterminal name as the data type name.

The abstract syntax representation of an expression is most readily viewed as an abstract syntax
tree. For example, seefigure 2.1 for the abstract syntax tree of the lambda cal culus expression
(lambda (x) (f (f x))).Eachnodeof the tree correspondsto astep in asyntactic

derivation of th

e expres-



sion, with internal nodes labeled with their associated production name. Edges are labeled with the
name of the corresponding nonterminal occurrence. Leaves correspond to terminal strings.

Exercise 2.6 [ *] Draw the abstract syntax tree for the lambda cal culus expression
((lanbda (a) (a b)) c)

Abstract syntax trees are useful in programming-language processing systems because programs
that process other programs, such as interpreters or compilers, are almost always syntax directed.
What is done with each part of a program is guided by knowledge of the grammar rule associated
with that part, and any subparts corresponding to nonterminalsin the grammar rules should be
readily accessible. For example, when processing the lambda calculus expression (| anbda

(x) (f (f x))),wemustfirst recognize it as alambda calculus expression, corresponding to
the BNF rule

(expression) = (lambda ({identifier)) (expression))

Then the formal parameter isx andthebody is(f (f x)).Thebody mustinturnbe
recognized as an application, and so on. Converting the program to an abstract syntax tree enables
the processing system to make such decisions easily.

For example, the procedure occur s- f r ee? in section 1.3 can be:

(define occurs-free? (lanbda (var exp) (cases expression exp (var -
exp (id) (eqv? id var)) (1 ambda-

exp (id body) (and (not (eqv? id var)) (occurs-

free? var body))) (app-exp (rator rand) (or (occurs-

free? var rator) (occurs-free? var rand))))))

The use of the abstract syntax avoids the use of obscure car-cdr chains to extract the components
of the expression.

As another example, we may consider the problem of converting an abstract syntax tree back to a
list-and-symbol representation. If we do this, the Scheme print routines will then display itinits
concrete syntax. Thisis performed by unpar se- expr essi on:



(define unparse-expression (lanbda (exp) (cases expression exp (var-

exp (id) id) (1 ambda-

exp (id body) (list "lanbda (list id) (unpar se-
expressi on body))) (app-exp (rator rand) (l'ist (unparse-
expressi on rator) (unparse-expression rand))))))

If aprogram isrepresented as a string of characters, it may be a complex undertaking to derive the
corresponding abstract syntax tree. Thistask, which is called parsing, is unrelated to whatever we may wish
to do with the abstract syntax tree. Thus the job of parsing is best performed by a separate program, called a
parser. Since abstract syntax trees are produced by parsers, they are also known as parse trees.

If the concrete syntax of alanguage happens also to be list structures (including symbols and numbers), the
parsing processis greatly simplified. For example, every expression specified by our lambda calculus
grammar is both a string and alist structure. The Schemer ead routine automatically parses strings into lists
and symbols. It isthen easier to parse these list structures into abstract syntax treesasin par se-

expr essi on.

(define parse-expression (lanbda (datum (cond ((synbol ? datum (var-

exp datum)) ((pair? datum (if (eqv? (car datun) 'l anbda) (1 anbda-
exp (caadr datum (parse-expression (caddr datum)) (app-

exp (parse-expression (car datum) (parse-

expression (cadr datunm))))) (el se (eopl: error 'parse-

expressi on "Invalid concrete syntax ~s" datum))))

Where aKleene star or plusis used in concrete syntax, it is most convenient to use alist of associated
subtrees when constructing an abstract syntax tree. For example, consider a variant of the exercise 1.31
syntax in figure 2.2. Herei ds and r ands are associated with lists of formal parameters and operand
expressions, respectively. The predicate for ther ands fieldcanbe (1 i st - of expressi on?).



(expression) = (number)
_-l it-exp (datum) '

n= {var-exp)
|var-exp (id) |

n= (Lf {expression) {expression) {(expression})
|1f-exp (test-exp true-exp false-exp)

n= {lambda ({{identifier)}*) (expression})
|lambda-exp (ids body) |

= ({expression) {(expression}}*)
:app-e:d:p (rator rands)

Figure 2.2 Lists of formal parameters and operand expressions

Exercise 2.7 [ * *] Define the data type and parse and unparse procedures for the above grammar. Then
implement | exi cal - addr ess of exercise 1.31 using abstract syntax. It will be helpful to add two new
variants

(lex-info (id synbol?) (depth nunber?) (position nunber?))(free-
info (id synbol?))

representing the translation of a given bound or free variable reference. The valuereturned by | exi cal -
addr ess may then be generated using an unparse procedure that takes an abstract syntax tree of the form

indicated by the above grammar, but with | €x- i nf 0 andf r ee- i nf o variantsin place of var - exp
variants.

Exercise 2.8 [ *] Rewrite the solution to exercise 1.19 using abstract syntax. Then compare this version to the
original solution.

Exercise 2.9 [*] The procedure par Se- eXpr essi on isfragile: it does not detect severa possible
syntactic errors, suchas( @ b ), and aborts with inappropriate error messages for other expressions, such
as( | anbda) . Modify it so that it is robust, accepting any datum and issuing an appropriate error message
if the datum does not represent alambda cal culus expression.



Exercise 2.10 [ *] Consider the definition of f r esh- i d:

(define fresh-id (lanbda (exp s) (let ((synms (all-

ids exp))) (letrec ((loop (I ambda (n) (let ((sym(string-

>synbol (string-append s (numnber -

>string n))))) (if (memv symsyms) (loop (+ n 1)) sym)))) (1oop 0)))))
Implement f r esh-i d by definingal | - i ds, whichfindsall the symbolsin an expression. Thisincludes the free occurrences, the

bound occurrences, and the lambda identifiers for which there are no bound occurrences.

> (fresh-id (app- exp (I anbda-exp 'w2 (app-exp (var-exp 'wl) (var-
exp 'wo))) (var-exp 'w3)) "w') wd

Exercise 2.11 [* *] Let us assume that our lambda calculus expression has been enhanced with the constants 3, *, and +. Extend
par se- expr essi onandunpar se- expr essi on to support this enhancement.

Next, consider substituting (* p 3) for x in (lanmbda (p) (+ p x)) and(lanbda (q) (+ g x)).The
resulting expressionsare (| anbda (p) (+ p (* p 3))) and(lanbda (q) (+ q (* p 3))).

Thisiswrong, because we know that changing the name of a bound variable shouldn't make a difference: (| anbda (p) (+ p
X)) and(l anmbda (q) (+ g X)) should behave the same way, and the terms after substitution will definitely behave
differently. In the first example, we say that thep in (* p 3) hasbeen captured by the binding occurrence.

We can fix this problem by renaming the bound variable to some fresh name, say PO, so the result of the substitution becomes (| anbda

(p0) (+ pO (* p 3))).Captureisthereby avoided; it no longer matters whether the original bound variable was p or (. Here
isthe notation we use for this thoughout: E1[E2/X]. The resultant expression is the same as E1 with free occurrences of the identifer x replaced
by the expression Ez.

Below is the definition of a procedure that substitutes SUDSt - eXp for all occurrences of Subst - i d inexp, but without renaming.



(define | anbda- cal cul us-subst (|l anbda (exp subst-exp subst -

id) (letrec ((subst (I ambda (exp) (cases expression exp (var -
exp (id) (if (eqv? id subst-id) subst-exp exp)) (1 ambda-

exp (id body) (Il anmbda-exp id (subst body))) (app-

exp (rator rand) (app-exp (subst rator) (subst rand))) (lit-

exp (datum (lit-exp datum) (pri mapp-

exp (primrandl rand2) (pri mapp-

exp prim (subst randl) (subst rand2))) )))) (subst exp))))

Fix| anbda- cal cul us- subst sothat it performs renaming when necessary. Hint: usef r esh- i d from the previous exercise.

Exercise 2.12 [ *] In the previous exercise, we presented the lambda cal culus substitution operator, Ex[E2/X]. Here, we define three new operators
that rely oniit: a, 3, and n.

* (I anbda (y) E) a-convertsto (I anbda (x) E[x/y]), if xisnot freein E
 ((1 ambda (x) E1) E2) B-convertsto E1[E2/X]

« (I anmbda (X) (E X)) n-convertsto E, if x isnot freein E.
Implement these operators. Do they use recursion explicitly?

Exercise 2.13 [ *] Define atermto be either avariable, a constant (either a string, a number, a boolean, or the empty list), or alist of terms. We
can use the following data type to define the abstract syntax of terms.

(define-datatype termtern? (var-term (id synbol ?)) (constant-
term (datum constant?)) (app-term (terns (list-of tern®))))



We represent aterm using symbols for variables and lists for app terms, while treating everything elseasa
congtant. Thus the term

("append" ("cons" wx) y ("cons" w z))

represents an abstract syntax tree that can be built by

(app-term (list (constant-term "append") (app-
term (list (constant-term "cons") (var-term'w) (var-
term'x))) (var-term'y) (app-term (list (const ant -

term"cons") (var-term'w) (var-term'z)))))

Implement par se-term unparse-termandal | -i ds (exercise 2.10) for this term language.

2.3 Representation Strategiesfor Data Types

We have seen that when data abstraction is used, programs have the property of representation
independence: programs are independent of the particular representation used to implement an
abstract datatype. It is then possible to change the representation by redefining the small number
of procedures belonging to the interface. We frequently use this property in later chapters.

In this section we introduce some strategies for representing data types. We illustrate these choices
using a data type of environments. An environment associates a value with each element of afinite
set of symbols. An environment may be used to associate variables with their valuesin a
programming language implementation. A symbol table, which among other things may associate
variable names with lexical address information at compile time, is another use of an environment.

2.3.1 The Environment I nterface

An environment is a function whose domain is afinite set of Scheme symbols, and whose rangeis
the set of all Scheme values. If we adopt the usual mathematical convention that afunction is a set
of ordered pairs, then we need to represent all sets of the form {(s1, v1), . . ., (S, vn)} wherethe s
are distinct symbols and the vi are any Scheme values.



The interface to this data type has three procedures, specified as follows:

{ empty-env ) = [0]
apply-env [f]s) = f(s)
{ extend-env

"5 .. S

WM aes U

fh = [g],
where g(s') = 4 U ifs'=s forsomei, 1 <i<k
’ f(s")  otherwise

The procedure enpt y- env, applied to no arguments, must produce a representation of the empty
environment; appl y- env applies arepresentation of an environment to an argument; and
(extend-env '(s1...sn) " (v1...vn) env) produces a new environment that behaves like env,
except that its value at symbol s isvi. For example, the environment { (d,6), (x,7), (v,8)} may be
constructed and accessed as follows:

> (define dxy-env (extend-env '(d x) '(6 7) (ext end-
env '(y) '(8) (enpty-env))))> (apply-env dxy-env 'x)7

Most interfaces will contain some constructors that build elements of the data type, and some
observers that extract information from values of the datatype. In this example, enpt y- env and
ext end- env are the constructors, and appl y- env isthe only observer.

Exercise 2.14 [ * *] Consider the datatype of stacks of values, with an interface consisting of the procedures
enpty-stack, push, pop, top,andenpty-stack?. writeaspecification for these
operations in the style of the example above. Which operations are constructors and which are observers?

2.3.2 Procedural Representation

A first-class object is one that can be passed as an argument, returned as avalue, and stored in a
data structure. In languages such as Scheme in which procedures are first-class, it is often
advantageous to represent data as procedures, particularly when the data type has multiple
constructors, but only a single observer.



(define enpty-env (Il anmbda () (lanbda (sym (eopl:error '"apply-env "No binding for ~s" sym)))
(define extend-env (lanbda (syns vals env) (lambda (sym (let ((pos (list-find-

position symsyns))) (i f (nunber? pos) (list-ref vals pos) (appl y-

env env synm)))))) (define apply-env (lanbda (env syn) (env sym)) (define list-find-

position (lanbda (sym ]l os) (list-index (lanmbda (syml) (eqv? syml syn)) los)))(define |ist-

index (lanbda (pred |Is) (cond ((nul'l? I's) #f) ((pred (car Is)) 0) (else (let ((list-
index-r (list-index pred (cdr Is)))) (if (nunber? list-index-r) (+ list-
i ndex-r 1) #))))))

Figure 2.3 Procedural representation of environments

An environment may be represented as a Scheme procedure that takes a symbol and returns its associated value. With this
representation, the environment interface may be defined asin figure 2.3.

If the empty environment, created by invoking enpt y- env, is passed any symbol whatsoever, it indicates with an error message
that the given symbol is not in its domain. The procedure ext end- env returns a new procedure that represents the extended
environment. This procedure, when passed a



symbol sym first uses the auxiliary procedurel i st -fi nd- posi ti on to determine the
position of syminsymns. The procedurel i st - fi nd- posi tion,inturn,usesl i st-i ndex
to accomplish this. If symisinsyns, thenl i st -i ndex returns an integer representing its
position, and the corresponding element of val s isreturned using the procedurel i st -ref . If
symisnotinsyns, thenl i st -i ndex returns#f , and symislooked up in the old environment
env, in accordance with the specification.

Very often the set of valuesin the data type can be represented as a set of procedures. In this case,
we can extract the interface and the procedural representation by the following steps:

1. Identify the lambda expressions in the client code whose evaluation yields values of the type.
Create a constructor procedure for each such lambda expression. The parameters of the constructor
procedure will be the free variables of the lambda expression. Replace each such lambda
expression in the client code by an invocation of the corresponding constructor.

2. Definean appl y- procedure like appl y- env above. Identify all the placesin the client code,
including the bodies of the constructor procedures, where avalue of the typeis applied. Replace
each such application by an invocation of theappl y- procedure.

If these steps are carried out, the interface will consist of all the constructor procedures and the
appl y- procedure, and the client code will be representation-independent: it will not rely on the
representation, and we will be free to substitute another implementation of the interface, such as
those we are about to describe.

Exercise 2.15 [ *] Implement the stack data type of exercise 2.14 using a procedural representation.

Exercise 2.16 [ *] Implement the procedure| | st - f i nd- | ast - posi ti on,whichislikel i St -
fi nd- posi ti on except that it returns the position of the rightmost matching symbol. For example, in
thelis(c a b a ¢ a d e),thelist-find-positionofaisi, whereasli st -
find-1ast-positionofaiss Dothiswithoutusingr ever seorl i st->vect or.When
canl i st-find-positionbeusdinplaceofl i st-find-I|ast-position?

Interfaces created in this way will have only one observer. If more than one observer is needed, a

single procedure as described here may not be enough to represent all the data. In generdl, if there
are n observersin the interface the procedural representation will require arecord of n procedures,
one for each observer.



Exercise 2.17 [ * *] Add to the environment interface a predicate called has- associ at i on? that
takes an environment env and a symbol s and teststo see if s has an associated value in env. Extend the
procedural representation to implement this by representing the environment by two procedures; one that
returns the value associated with a symbol and one that returns whether or not the symbol has an association.

2.3.3 Abstract Syntax Tree Representation.

This procedural representation is easy to understand, but it requires that procedures be first-class
objects. Another representation can be obtained by observing that every environment is built by
starting with the empty environment and applying ext end- env ntimes, for somen= 0. Thus
every environment can be built by an expression like

(extend-env symshvalsn ... (ext end- env symsi valsi (empty-

env)) ...)

These expressions can be described by the grammar

(env-rep) &= (empty-env)
empty-env-record

n= (extend-env ({{symbolj}') ({{value}}*) (env-rep))
extended-env-record (syms vals env)

The abstract syntax trees for this grammar can be defined by

(define-datatype environnent environnent? (enpty-env-record) (extended-
env-record (syms (list-of synbol ?)) (vals (list-of schene-
val ue?)) (env environnent ?))) (define schene-value? (lanbda (v) #t))

We can implement the environment abstraction by redefining the procedures enpt y- env and
ext end- env to build the appropriate variants and by redefining appl y- env to interpret the
information in these records and perform the actions specified by the body of the appropriate
(lanmbda (sym ...) expression. Theimplementation of the environment data type using
this new representation is:



(define enpty-env (lanbda () (enpty-env-record))) (defi ne extend-

env (lanbda (syms vals env) (ext ended-env-record syns vals env)))
(define apply-env (lanbda (env syn) (cases environnent env (empty-
env-record () (eopl:error 'apply-

env "No binding for ~s" sym) (ext ended- env-

record (synms vals env) (let ((pos (list-find-

position symsyns))) (i f (nunber? pos) (list-

ref vals pos) (apply-env env sym))))))

The consequent expressions of the cases expression are exactly the same as the bodies of the
respective (| anbda (sym ...) expressionsin the procedural representation, and the variant
fields correspond exactly to the lexically-bound free variables in these lambda expressions.

With this representation, the last transcript might continue as follows.

> (environnent-to-list dxy-env)(extended-env-record (d x) (6 7) (extended-
env-record (y) (8) (enmpty-env-record)))

Theresult isalist representation of an abstract syntax tree that shows how the tree was
constructed using enpt y- env and ext end- env.

Exercise 2.18 [*] Implement envi ronnent -t o- 1 i st .

This example illustrates a general technique for transforming a procedural representation into an
abstract syntax tree representation. The key stepsin the transformation are:

1. Identify the constructors for new values of the type, and create a data type with one variant for
each constructor. Each variant should have one field for each parameter of the constructor. If the
type has been derived from a set of procedures, as described at the end of section 2.3.2, then the
fields will be the same as the free variables of the original lambda expression.



2. Define the constructors to build the appropriate variant of the data type.

3. Definethe appl y- procedure for the type using (cases type-name. . .) with one clause per
variant, where the variable list of each clause lists the parameters of the constructor and the
consequent expression of each clause is the body of the corresponding lambda expression.

Exercise 2.19 [ *] Implement the stack data type of exercise 2.14 using an abstract syntax tree representation.

Exercise2.20 [ *] Add has- associ at i on? of exercise 2.17 to the abstract syntax tree representation.

2.3.4 Alternative Data Structure Representations

Aswe mentioned above, def i ne- dat at ype provides a convenient general implementation of
trees. In many cases, however, we can exploit patterns in the data to obtain additional
simplifications.

For example, as we noted above, every environment is built by starting with the empty
environment and applying ext end- env some number of times: that is, by an expression in the
grammar

{env-exp) ;1= (empty-env)
(extend-env ({{symbol}}'} ({{value}}*) {env-exp})

We need to represent the abstract syntax trees of this grammar. We could represent them by a data
type, but we can use any representation in which we can awaystell what kind of tree we have and
from which we can extract the pieces.

Here, we have a single constant constructor and a single non-trivial constructor. So the tag
information in the abstract syntax treesis redundant. We could simply represent these trees by list
structures given by the grammar

{env-rep) n= ()
= ((({{symbol)}") ({{value)}"')) . {env-rep})

We can always tell which kind of environment we have: an empty list represents the empty
environment, and a non-empty list represents an environment built by ext end- env.

For a data structure representation, the constructors simply build the appropriate list structure. An
observer examines the data structure it is given, determines which kind of structureit is, extracts
the components, and



performs the same operations on the components that it did in the abstract syntax tree representation. Thus our running example becomes:
> (define dxy-env (extend-env '(d x) '(6 7) (extend-env '(y) '(8) (enpty-env))))> dxy-env(((d x) (6 7)) ((y) (8)))
Exercise 2.21 [*] What list structure does ( ext end-env ' () ' () (enpty-env)) produce?

We use these definitions to implement our environment interface:

(define enpty-env (lanbda () "())) (define extend-env (lanmbda (syns vals env) (cons (list syms vals) env)))(define apply-

env (lanmbda (env sym (if (null? env) (eopl :error 'apply-

env "No binding for ~s" sym (let ((synms (car (car env))) (vals (cadr (car env))) (env (cdr env))) (let ((pos (list-
find-position symsyns))) (i f (nunber? pos) (list-ref vals pos) (apply-env env sym))))))

This representation is called the ribcage representation. The environment is represented as alist of lists called ribs; the car of each rib isalist of symbols and the cadr of each rib isthe
corresponding list of values.

Some efficiency may be gained by observing that we are always using an index to retrieve values from the values list. If the values were stored in a vector instead of alist, thislookup would
be constant (using vect or - r ef ) rather than linear time (using | i st - r ef ). We also take this opportunity to change the representation of arib from alist of two elementsto asingle pair.
For this new representation, we modify our previous code to become



(define extend-env (lanbda (syns vals env)| (cons (cons syns (list->vector vals)) env)))(define apply-

env (lanbda (env sym (if (null? env) (eopl:error 'apply-
env "No binding for ~s" sym (let ((synms (car (car env)))]| (vals (cdr (car env))) (env (cdr env))) (let ((pos (list-
find-position symsyns))) (i f (nunmber? pos) | (vector-ref vals pos) (apply-env env sym))))))

Figure 2.4 shows an environment represented in thisway. This figure also illustrates why thisis called aribcage representation. (See exercise 2.22.)

If environment lookup is based on lexical distance information, we can eliminate the symbol lists, representing environments simply as alist of vectorsasinappl y- env-1 exi cal below.

(define extend-env (lanbda (syns vals env)| (cons (list->vector vals) env)))(define apply-env-

| exical (lanbda (env depth position) (if (null? env) (eopl :error 'apply-env-

| exi cal "No binding for depth = ~s position = ~s" dept h position) (if (zero? depth) (vector-
ref (car env) position) (appl y-env-lexical (cdr env) (- depth 1) position)))))

Exercise 2.22 [ *] Design a 2-element rib data type and use it to implement the environment interface.

Exercise2.23 [* *] A simpler representation of environments would consist of asingle pair of ribs: alist of symbolsand alist of values. Implement the environment interface for this representation.
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Figure 2.4 Ribcage environment structure with vectors

Exercise 2.24 [ * *] Define a substitution to be a function whose domain is the set of Scheme symbols and
whose range is the set of all terms (exercise 2.13). The interface for substitutions consists of ( enpt y-
subst ) , Which binds its argument to a variable term of its argument, referred to as atrivial association;
(@appl y- subst si), which returnsthe value of symbol i in substitution s; and (ext end- subst its),
which returns a new substitution like s, except that symbol i is associated with term t.

Implement the data type of substitutions with both a procedural representation and an abstract syntax tree
representation.

Then implement a procedure SUDSt - 1 N- t er mthat takes aterm and a substitution and walks through the
term replacing each variable with its association in the substitution, much like the procedure SUbst of
section 1.2.2. Finally, implement SUDSt - i N-t er s that takes alist of terms.

Exercise 2.25 [ * *] Animportant use of substitutionsis in the unification problem. The unification problem
is: given two termst and u, can they be made equal? More precisely, is there a substitution s such that
(subst -i n-termts)and(subst - i n-t er mus) are equal? We say that such an s unifiest and u.
There may be many such unifiers, but there will always be one that is the most general.



The code below shows part of an algorithm to find the most general unifying substitution. If no such unifier
exists, it returns #f .

(define unify-term (lanbda (t u) (cases termt (var-

term (tid) (if (or (var-term? u) (not (menv tid (all-

ids u)))) (unit-

subst tid u) #)) (el se (cases termu (var -
term(uid) (unify-termu t)) (constant -

term (udatum (cases termt (const ant -

term (tdatum (if (equal ? tdatum udatun) (enpty-

subst) #f)) (el se #f))) (app-

term (us) (cases termt (app-term (ts) (unify-
terns ts us)) (else #f)))))))) (define unify-

terns (lanmbda (ts us) (cond ((and (null? ts) (null? us)) (enmpty-
subst)) ((or (null? ts) (null? us)) #f) (el se (let ((subst-
car (unify-term (car ts) (car us)))) (if (not subst-

car) #1 (let ((newts (subst-in-terms (cdr ts) subst-
car)) (newus (subst-in-terns (cdr us) subst-

car))) (let ((subst-cdr (unify-terms newts new

us))) (if (not subst-

cdr) #f (conpose-substs subst-car subst-
cdr))))))))))

Complete the algorithm by extending the substitution interface with the two proceduresuni t - subst and
conpose- subst s. Theapplication (UNi t - Subst i t) returns a substitution that replaces symbol i
with term t and replaces any other symbol by itstrivial association. The application (COnpose- subst s
St 2) returns a substitution s’ such that for any termt, (SUbSt - I n- t er mt s) returns the same term as
(subst -i n-term(subst-in-termts) ).

Themenv testinuni f y-t er miscalled the occurs check. Create an example to illustrate that thistest is
necessary.



2.4 A Queue Abstraction

Asafina example of the use of data abstraction, consider queues. An interface for queues might
include operations for setting the queue to empty, testing it for empty, placing avalue on the
gueue, and removing an object from the queue.

In afunctional setting, these operations might take queues as arguments and return queues as
results. However, we often want queues to be shared from widely separate procedures, so it would
be difficult to pass the queues as arguments from one procedure to another. In thissituation it is
more convenient for the procedures to refer to a shared queue with state.

The representation of the queue is hidden, so the interface consists of a procedure for creating a
gueue and procedures that will return each of the operations that will act on the shared hidden state
of the queue.

Thisinterface consists of the following procedures:
*(create-queue) createsaqueue object.
* (queue-get -reset-operation () returnsaprocedure that sets the queue to empty.

* (queue-get - enpt y?-operati on q) returnsaprocedure that determines whether the
gueue is empty.

* (queue- get - enqueue- oper ati on q) returnsthe enqueue operation on the queue.
* (queue- get - dequeue- oper ati on @) returnsthe dequeue operation on the queue.

The code in figure 2.5 creates such a queue. It creates four procedures with access to a shared
hidden state consisting of the variablesg- i n and g- out . Instead of assigning these procedures to
global variables, we return avector containing these four procedures. Then client code can use this
vector like this:

(let ((gl (create-queue)) (g2 (create-queue))) (let ((engl (queue-get-

engueue- operation ql)) (eng2 (queue-get-enqueue-
operation g2)) (degl (queue-get-dequeue-
operation ql)) (deg2 (queue-get - dequeue-

operation qg2))) (begin (engl 33) (eng2 (+ 1 (deqgl))) (deqg2))))



(define create-queue (lanmbda () (let ((g-in "()) (g-out "())) (letrec ((reset-

queue (lanmbda () (set! g-in '()) (set! g-out '()))) (enpty-
queue? (lanbda () (and (null? g-in) (null? g-

out)))) (enqueue (lambda (x) (set! g-in (cons x g-

in))) (dequeue (lanmbda () (i f (enpty-queue?) (eopl

error 'dequeue "Not on an enpty queue") (begin (if (null? g-
out) (begin (set! qg-out (reverse g-in)) (set! g-
in'"()))) (let ((ans (car g-out))) (set! g-out (cdr g-

out)) ans)))))) (vector reset-queue enpty-queue? enqueue dequeue)))))

(define queue-get-reset-operation (lanmbda (q) (vector-ref g 0)))(define queue-get-enpty?-
operation (lanbda (qg) (vector-ref g 1)))(define queue-get-enqueue-operation (lanbda (q) (vector-
ref g 2)))(define queue-get-dequeue-operation (lanbda (qg) (vector-ref q 3)))

Figure 2.5 A data type of queues




This creates two queues, initially empty. It binds the enqueue and dequeue operations on these
gueues to convenient names. Then it places the number 33 on the first queue, removesit, adds one
to it, places it on the second queue, and then removes it, producing the answer 34.

The code in figure 2.5 has a useful but non-obvious property: it uses amortized linear time. The
dequeue operation may take longer than constant time, because it may need to reverse g- i n, but
it can be shown that this occurs so rarely that the queue takes only O(n) steps to execute n
requests. The proof of this property is beyond the scope of this book.

The idea of sharing a small hidden state among a bundle of proceduresisimportant. Such a
package is often called an object, and the procedures that act on the state are called methods. This
isthe main idea of object-oriented programming, which we study in chapters 5 and 6. In the
context of operating systems, methods are sometimes called capabilities.

Exercise 2.26 [ * *] A cell interface consists of these four operations: cel | , cel | ?, contents,
andset cel | . Theprocedurecel | storesits argument in amemory location; cel | ? determinesif its
argument isacell; cont ent S retrievesthe value of the cell; and Set cel | storesits second argument in

the first argument, which must be a cell. Use the datatype I ef er ence with a one-element vector to
implement the cell interface. Then use the queue interface style to encapsulate these definitions.

(define-datatype reference reference? (a-
r ef (position integer?) (vec vector?)))

Further Reading

The idea of data abstraction was a prime innovation of the 1970s and has alarge literature, from
which we mention only (Parnas, 1972) on the importance of interfaces as boundaries for
information-hiding.

Our def i ne- dat at ype and cases "consconstructs wereinspired by ML'sdat at ype and
pattern-matching facilities described in (Milner, Tofte, & Harper, 1989) and (Milner, Tofte,
Harper, & MacQueen, 1997).

We learned about the representation of sets of procedures as data structures from (Reynolds,
1972). Thisideais formalized under the name of supercombinatorsin (Hughes, 1982). For more
detail, see (Peyton Jones, 1987).

The concept of unification was brought into computer science in (Robinson, 1965) for usein
automatic theorem proving. The implementation of queuesin section 2.4 is presented in (Okasaki,
1998).



3 Environment-Passing | nterpreters

In this chapter we study the semantics, or meaning, of some of the most common and fundamental
programming languages features. Our primary tool for this study isinterpreters. Figure 3.1(a)
shows the setup for using an interpreter. Program text (a program in the source language) is passed
through afront end that convertsit to a syntax tree. The syntax tree is then passed to the
interpreter, which is a program that looks at a data structure and performs some actions that
depend on its structure. In the case of alanguage-processing system, the interpreter takes the
abstract syntax tree and convertsit, possibly using external inputs, to an answer.

An aternative organization is shown in Figure 3.1(b). There the interpreter is replaced by a
compiler, which trandlates the abstract syntax tree into some other language (the target language),
which inturn is executed by an interpreter. Most often, this other language is a machine language,
which isinterpreted by a hardware machine, but some language implementations use a special-
purpose target language that is simpler than the original and for which it isrelatively ssmple to
write an interpreter. This allows the program to be compiled once and then executed on many
different hardware platforms.

A compiler istypically divided into two parts: an analyzer that attempts to deduce useful
information about the program, and a tranglator that does the trandation, possibly using
information from the analyzer. We study some simple analyzers and trandlators in chapters 4, 6,
and 8.

Other than those chapters, our language processors will be interpreters. They allow us to specify
the behavior of language featuresin a high-level fashion without also having to deal with the
peculiarities of atarget language.
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Figure 3.1 Block diagrams for alanguage-processing system

We develop interpreters for a series of simple languages. Each interpreter is a data-driven
procedure. We have already developed severa such procedures. Theseincludeoccur s-
free?, | anbda-cal cul us-subst, parse-expression,andunparse-
expr essi on of section 2.2.2, and the appl y- procedures of section 2.3. Each of these
procedures takes data and performs some action determined by the form of the data.

The semantics of variable binding mechanismsis of primary importance in these languages. We
are also interested in seeing how these bindings are made concrete using environments.



3.1 A SimplelInterpreter

In this section we develop asimple interpreter that reflects the fundamental semantics of many
modern programming languages and is the basis for most of the material in the rest of this book.
We build this interpreter in stages, starting with the simplest forms: literals, variables, and
primitive applications. Then we add other forms one at atime.

An important part of the specification of any programming language is the set of values that the
language manipulates. Each language has at least two such sets: the expressed values and the
denoted values. The expressed values are the possible values of expressions, and the denoted
values are the values bound to variables. In Scheme, for example, there are many kinds of
expressed values, such as numbers, pairs, characters, and strings, but there is only one kind of
denoted value: locations containing expressed values.

In our first language the expressed values are the integers, and the denoted values are the same as
the expressed values. We write this as follows:

Expressed Value = MNumber
Denoted Value MNumber

We use equations like this as informal reminders of the expressed and denoted values for each of
our interpreters.

We aso need to distinguish two languages: the defined language (or source language), which is
the language we are specifying with our interpreter, and the defining language (or host language),
which is the language in which we write the interpreter. In our case the defining language is
Scheme with def i ne- dat at ype and cases. The equations above describe the expressed and
denoted values of the defined language.

We start with the following syntax:



{program} == {expression)
:a-prﬂgram lexp) |

{expression) == (number)
[lit-exp (datum) |

w= (identifier)
lvar-exp (id)]

= {primitive} ({{expression}}*':!)
:primappaex}} [pt‘im rands}:

{primitive} ==+ |- | # | add1 | sub1



A program isjust an expression. An expression is either a number, an identifier, or aprimitive
application consisting of a primitive operator, aleft parenthesis, alist of expressions separated by
commas, and aright parenthesis. Typical expressions in our language are

3x+(3, x)add1(+(3, x))

The abstract syntax trees are built, as before, of records with type definitions based on the abstract
syntax names given with the grammar.

(define-datatype program progranf? (a-program (exp expression?)))
(define-dat atype expression expression? (lit-

exp (datum number?)) (var-exp (id synbol ?)) (prinmapp-

exp (primprimtive?) (rands (list-of expression?))) )(define-
datatype prinmitive primtive? (add-prim (subtract-prin) (nult-
prim (incr-prim (decr-prim)

The second field of apr i mapp- exp record contains alist of abstract syntax trees for the
application's operands. For the primitive operations, we have one variant for each primitive.

Exercise 3.1 [ *] Consider the fourth example above. Then implement the procedure pr ogr amt o-
| i st sothat it returnsthe list

(a-program (prinmapp-exp (incr-prim ((primapp-exp (add-
prim ((lit-exp 3) (var-exp x))))))



Our first interpreter is shown in figure 3.2. It follows the grammar, so it has three procedures,
eval - program eval - expressi on,andappl y-pri m tive, which correspond to the
three nonterminal's, <program>, <expression>, and <primitive>. In addition it has two auxiliary
procedures, eval - r ands andi ni t - env, which simplify the presentation.

The main procedure, eval - pr ogr am is passed the abstract syntax tree of a program and returns
itsvalue. It follows afamiliar pattern, branching on the type of record at the root of the tree. Since
aprogram always consists of an expression, thereis only one possibility, but we still need to use
cases to extract this expression from the abstract syntax tree. The procedure eval - pr ogr am
passes this expression to eval - expr essi on, along with a suitable environment in which to
find the values of any identifiers that appear in the expression. The auxiliary procedurei ni t -
env iscalled to build this environment; we have chosen to put afew arbitrary bindingsin the
initial environment.

The most interesting procedureis eval - expr essi on. It takes an expression and an
environment, and returns the value of the expression using that environment to find the values of
any variables. Like eval - pr ogr am it branches on the type of the root of the tree:

» Thefirst caseiseasy: If exp isaliteral, the datum is returned.

* If exp isanode that represents a variable, we look up the identifier in the environment to find its
value.

* The last possibility isthat exp isanode that represents an application of a primitive operation to
some operands. We first evaluate the operands, using the auxiliary procedure eval - r ands, and
then pass them and the primitive operation to appl y- pri m t i ve to determine the actual value.

The procedure eval - r ands takesalist of operands and an environment. It evaluates each
operand using eval - r and, whichinturn callseval - expr essi on. We need to pass the
environment to both eval - r ands and eval - r and so that they will have the information they
need to evaluate any variables that appear in the subexpressions. We need not pass the
environment to appl y- pri m ti ve, however, because that procedure deals only with values,
not with expressions that might contain variables.

The procedure appl y- pri m ti ve takesaprimitive operation and alist of values and produces
the value that should be obtained by applying the primitive operation to the list of values. Like
eval - progr amand



(define eval -program (Ilanbda (pgm (cases program pgm (a-

program ( body) (eval -expression body (init-env))))))(define eval -
expression (lanmbda (exp env) (cases expression exp (rit-

exp (datum datum (var-exp (id) (apply-env env id)) (pri mapp-
exp (primrands) (let ((args (eval -

rands rands env))) (apply-primtive primargs))) )))
(define eval-rands (Il anbda (rands env) (map (lanbda (x) (eval -

rand x env)) rands)))(define eval-rand (lanbda (rand env) (eval -
expression rand env))) (define apply-

primtive (lanmbda (primargs) (cases primtive prim (add-
prim () (+ (car args) (cadr args))) (subtract -

prim() (- (car args) (cadr args))) (mul t -

prim() (* (car args) (cadr args))) (incr-

prim() (+ (car args) 1)) (decr-prim () (- (car args) 1)) )))
(define init-env (lanbda () (ext end-

env (i v X) (1 5 10) (enpty-env))))

Figure 3.2 A simple interpreter




eval - expr essi on, it branches on the form of the primitive operation to decide what actual
operation to perform on these values.

This completes the discussion of our first interpreter.

Exercise 3.2 [* *] In what order are the subexpressionsin a primitive application evaluated? | s there away to
determine this empirically? Can the order affect the result?

3.2 TheFront End

Before we can conveniently test our interpreter, however, we need a front end that converts
programs into abstract syntax trees. Because programs are just strings of characters, our front end
needs to group these characters into meaningful units. This grouping isusually divided into two
stages. scanning and parsing.

Scanning is the process of dividing the sequence of characters into words, numbers, punctuation,
comments, and the like. These units are called lexical items, lexemes, or most often tokens. We
refer to the way in which a program should be divided up into tokens as the lexical specification of
the language. The scanner takes a sequence of characters and produces a sequence of tokens.

Parsing is the process of organizing the sequence of tokensinto hierarchical syntactic structures
such as expressions, statements, and blocks. Thisislike organizing (diagramming) a sentence into
clauses. Werrefer to this as the syntactic or grammatical structure of the language. The parser
takes a sequence of tokens from the scanner and produces an abstract syntax tree.

The standard approach to building afront end isto use a parser generator. A parser generator isa
program that takes as input a lexical specification and a grammar, and produces as output a
scanner and parser for them. Appendix A describes SLLGEN, a parser-generator system for
Scheme that we use in this book. In SLLGEN, the scanner and grammar for our example language
are specified in figure 3.3.

Thefirst definition is the lexical specification. It says that white space in the defined language
(here called whi t e- sp) isdefined to be the same as any Scheme whitespace character and
should be skipped; that a comment begins with a %character and consists of an arbitrary number
of characters until the end of the line is reached; that an identifier consists of aletter followed by
an arbitrary number of letters, digits, or question marks; and that a number consists of adigit
followed by an arbitrary number of digits. The second



(define scanner-spec-3-1 '((white-sp  (whitespace) skip) (comment  ("%" (arbno (not #
\newline))) skip) (identifier  (letter (arbno (or letter digit "?"))) symbol) (number  (digit (arbno digit))

(define grammar-3-1 ' ((program (expression) a- progr am (expression (nurber)
exp) (expression (id) var - exp) (expression (primtive "(" (separated-
list expression ",") ")" ) pri mapp- exp) (primtive ("+") add-

prim (primtive ("-") subtract-prim (primtive ("*") mul t -

prim (primtive ("addl") incr-prim (primtive ("subl") decr-prim))

Figure3.3scanner - spec- 3- 1 andgr anmar - 3- 1

number)))

lit-




> (define scané&parse (sll gen: make-string- parser scanner - spec- 3-
1 grammar - 3-1))> (sl | gen: nake-defi ne-dat at ypes scanner-spec- 3-

1 grammar-3-1)> (define run (lambda (string) (eval -

program (scané&parse string))))> (scan&parse "add1(2)") (a-
program (primapp-exp (incr-primy ((lit-exp 2))))> (run "add1(2)")

3> (define read-eval -print (sllgen: nake-rep-loop "--> " eval -
program (sll gen: nake- stream par ser scanner - spec- 3-

1 grammar-3-1)))> (read-eval -print)--> 55--> add1(2)3--> +(addl
(2) ,-(6,4))5

Figure 3.4 Read-eval-print loop for string syntax

definition corresponds to the productions of the grammar in the preceding section. Each
production is given a name, which becomes the name of the corresponding node type in the
abstract syntax tree.

The procedures!| | gen: make- def i ne- dat at ypes can be used to automatically generate the
def i ne- dat at ype declarations from the grammar, or else these declarations can be generated
by hand. The SLLGEN proceduresl| | gen: make- st ri ng- par ser isused to construct a
scanner and parser based on the lexical and grammatical specifications. It returns a procedure that
takes a string and produces an abstract syntax tree (figure 3.4.)

Parser generator systems are available for most major languages. If no parser generator is
available, or none is suitable for the application, one can



> (define run (lambda (x) (eval - program (parse-programx))))
> (run '5)5> (run '(addl 2))3> (define read-eval -

print (1l ambda () (begin (display "
> ") (wite (eval -program (parse-
program (read)))) (new i ne) (read-eval -print))))> (read-eval -

print)--> 55--> (addl 2)3--> (+ (addl 2) (- 6 4))5

Figure 3.5 Read-eval-print loop for Scheme-like syntax

choose to build a scanner and parser by hand. This processis described in most compiler
textbooks. The parsing technology and associated grammars used in this book are designed for
simplicity in the context of our very specialized needs.

Another approach isto ignore the details of the concrete syntax and to write our expressions as list
structures, aswe did in section 1.3. Thus, instead of writingaddl (+ (3, n)), wemight write
(addl (+ 3 n)). For thisapproach, we need a procedure par se- pr ogr am which takes a
Scheme list, symbol, or number and returns the corresponding abstract syntax tree. A test of this
front end, using run, appearsin figure 3.5.

While this approach is simple, it may lead to confusion between the defined language and the
defining language. It may also require more cumbersome syntax than the original string-oriented
syntax. When using this approach in doing exercises expressed in terms of string-grammar syntax,
feel free to invent appropriate list-structure syntax for use instead.



The interactive user interface provided by most implementations of Scheme (and other languages
suitable for interactive use) is aread-eval-print loop. The system reads an expression or definition,
evaluates it, prints the result, and then loops to repeat these actions. (See the second definition in
figure 3.5.) A read-eval-print loop for our interpreters makesit easier to run a number of tests.

By utilizing the SLLGEN procedures sl | gen: make- st r eam par ser andsl | gen: nake-
r ep- | oop to connect the parser to the stream of characters coming from the standard input, we
can define a read-eval-print loop using the string-syntax front end, asin figure 3.4. Since we will
be using SLLGEN, henceforth, if the prompt - - > appearsin atranscript, it indicates that the
current version of eval - pr ogr amis performing the evaluation.

Exercise3.3[*] Wit e parse-program Seesection2.2.2.
Exercise3.4[*] Test eval - progr amusing both r un and aread-eval-print loop.

Exercise 3.5 [ *] Extend the language by adding a new primitive operator pr i Nt that takes one argument,
printsit, and returnsthe integer 1.

Exercise 3.6 [ *] Extend the language by adding a new primitive operator Mi NUS that takes one argument, n,
and returns —n.

-->mnus (+(mnus(5), 9))-4

Exercise 3.7 [*] Add list processing primitives to the language, includingcons, car, cdr,
| i st,andanew variable, enpt y| i st , which isbound to the empty list. Since there is no support for

symboals, lists can contain only numbers and other lists. How does this change the expressed and denoted
values of the language?

-->list (1,2,3)(1 2 3)--> car (cons (4,enptylist))4

Exercise 3.8 [*] Add anew primitive Set car , which side-effects the car field of a cons pair. How does
this change the expressed and denoted values of the language?

Exercise 3.9 [ *] Modify the interpreter so that invoking a primitive operation on the wrong number of
arguments causes an error to be reported. (Since this check involves only static information, it could be done
prior to run-time, which is preferable for many reasons. We encourage the use of such an approach.)



3.3 Conditional Evaluation

To study the semantics and implementation of a wide range of programming language features, we
now begin adding these features to our defined language. For each feature, we add a production to
the grammar for <expression>, specify an abstract syntax for that production, and then add an
appropriate cases clauseto eval - expr essi on to handle the new type of abstract syntax tree
node. First we add a conditional expression syntax:

{expression) 1= if (expression) then (expression) else {expression)

if-exp (test-exXp true-exp false-exp)

To avoid adding booleans as a new type of expressed value, we let zero represent false and any
other value represent true and use the proceduret r ue- val ue?, which abstracts this decision:

(define true-value? (lanbda (x) (not (zero? x))))

If the value of thet est - exp subexpression is atrue value, the value of the entirei f - exp
should be the value of thet r ue- exp subexpression; otherwise it should be the value of the
f al se- exp subexpression. For example,

-->if 1 then 2 else 32-->if -(3,+(1,2)) then 2 else 33

This behavior is obtained by adding the following clausein eval - expr essi on:

(if-exp (test-exp true-exp fal se-exp) (if (true-value? (eval -
expressi on test-exp env)) (eval - expression true-
exp env) (eval -expression fal se-exp env)))

This code usesthei f form of the defining language to definethei f form of the defined
language. Thisillustrates how we are dependent on our understanding of the defining language: if
we do not know what Scheme'si f does, this code would not help us understand the new
language. In this case, of course, we do understand Scheme'si f , and our code provides some
additional information on the defined language's conditional expression as it considers any
nonzero value to be true.



Exercise3.10[*] Testi f formsby extending the interpreter of figure 3.2.

Exercise 3.11 [ *] Add to the defined language numeric equality, zero-testing, and order predicates
equal ?, zero?, greater?andl ess? tothesetof primitive operations. These predicates
should use 1 to represent true.

--> equal ? (3,3)1--> zero? (subl(5))0--> if greater? (2,3) then 5 else 66
Exercise 3.12 [ *] Add to the defined language the facilities of exercise 3.7, dong with the predicate nul | 2.

Exercise 3.13 [ *] Add to the defined language a facility that extendsi f ascond doesin Scheme. Use the
grammar

{expression) == cond {({expression) ==> {(expression)}' end
cond-exp (test-exps conseg-exps)

If none of the tests succeeds, the expression should return 0.Exercise 3.14 [ *] Add boolean valuesto the
expressed and denoted values of the language, so we have

Expressed Value = Number+ Bool
Denoted Value = MNumber 4+ Bool

Modify the predicates of exercise 3.11 to use these new booleans. Then modify eval - expr essi onto
produce an error if the test produces a non-bool ean.

Exercise 3.15 [ * *] As an aternative to the preceding exercise, add a new nonterminal <bool-exp> of boolean
expressions to the language. Change the production for conditional expressions to say

jexpression} ;= if (bool-exp) then (expression) else {expression)

Write suitable productions for <bool-exp> and implement eval - bool - exp. Where do the predicates of
exercise 3.11 wind up in this organization?

3.4 Local Binding

Next we address the problem of creating new variable bindingswith al et form. We add to the
interpreted language a syntax in which the keyword | et isfollowed by a series of declarations,
the keyword i n, and the body. For example,



let x =5 y = 6in +(x,Yy)

Theentirel et formisan expression, asisitsbody, sol et expressions may be nested. The usual
lexical binding rules for block structure apply: the binding region of al et declaration isthe body
of thel et expression, and inner bindings create holesin the scope of outer bindings. Thusin

let x = 1linlet x =+ (x,2) in addl(x)

the referenceto x in the first application refersto the outer declaration, whereas the reference to x
in the second application refers to the inner declaration, and hence the value of the entire
expressionis4.

The concrete syntax of thel et formis

{expression) u= let {(identifier) = (expression}}* in {expression)
:leL-exp (ids f&ﬁﬁg_ﬂﬁﬁﬂj:

The abstract syntax now looks like

idefine-datatype expression expression?
(lit-exp
(datum numser?) )
pvar-exp
{id svrbol?))
{primapp-exp
irator primitive?)
{rands (list-of expression?}}}
(if-exp
ftest-exp eXpresson?)
(true-exp expression?)
(falss-exp exprossion?))
{let-exn
[ids {list-of symbal?))
(rands (list-of expression?))
(body expression?)))

When al et expression is evaluated, the subexpressions on the right-hand side of its declarations
are evaluated first. Since the scope of these declarationsisrestricted to the | et expression's body,
the right-hand side subexpressions are evaluated in env, the environment of the entire| et
expression.



(define eval-sxpression
(lambda (exp env]
(Cases expression exp
{lit-exp (dabum) datum|
{var-exp (id} {apply-env env id}]
{primapp-exp {(prim rands)

(let {(args {eval-rands rands env)))

fapply-primitive prim args)) |
{if-exp (Cest-exp Crue-exp false-exp)

(if {true-value? (eval-expresssion test-exp env})
feval-expression Lrug-oxXp env)
{eval-expressicn false-exp env)))

{lec-exp (ids rands body)

(let (flargs (eval-rands rands env))]

(eval-expression body (extend-env ids args envil))

Ih)

Figure 3.6 Interpreter with i f and| et

Then the body of the |l et expression is evaluated in an environment in which the declared
variables are bound to the values of the expressions on the right-hand sides of the declarations,
whereas other bindings should be obtained from the environment in which the entire| et
expression is evaluated.

We obtain this behavior by adding the | et - exp clausein figure 3.6. First, eval - r ands isused
to evaluate the right-hand side expressions in the environment env. Then, the body is evaluated in
anew environment obtained by extending the current environment with bindings that associate the
declared variables with the values of their right-hand-side expressions.

As expected for alexical-binding language, afixed region of text, body, is associated with the
new environment bindings. Also, if ext end- env creates abinding for an already bound
variable, the new binding takes precedence over the old. Inner declarations thus shadow, or create
holes in the scope of, outer declarations. For example, the subexpression add1l ( x) isevaluated
in anew environment obtained by extending an environment binding x to 1 with abinding of x to
3. Since the binding of x to 3 takes precedence, thereferenceto x inaddl (x) yields 3 and the
final valueis 4. This satisfies the lexical binding rule associated with block-structured languages: a
variable reference is associated with the nearest |exically enclosing binding of the variable.



Exercise3.16 [ *] Test thel et form of theinterpreter of figure 3.6.

Exercise 3.17 [ *] Add to the defined language the facilities of exercise 3.7 and the primitive procedure €q?,

which should correspond to the Scheme procedure €q?. Why could this predicate not be adequately tested
until now?

Exercise 3.18 [ *] Add an expression to the defined language:

{expression) n= unpack {{identifier}}* = {(expression) in {(expression)
unpack-exp (ids exp body)

sothaaunpack X y z = Ist in...bindsX, Y,andZ totheelementsof | St if | St isalist of
exactly three elements, and reports an error otherwise.

3.5 Procedures.

So far our language has only the primitive operations that were included in the original language.
For our interpreted language to be at all useful, we must allow new procedures to be created. We
use the following syntax for procedure creation and application:

{expression) 1= proc  ({{identifier}}'’-)) (expression)

proc-exp (ids body)

i= ({expression) {{expression}}'}
app-exp (rator rands)

Thus we can write programs like
let f = proc (y, z) +(y,-(z,5))in (f 2 28)

Since the pr oc form may be used anywhere an expression is allowed, we can also write ( pr oc
(y,z) + (y, - (z,5)) 2 28).Thisisthe application of the procedure pr oc (y, 2z)
+ (y, - (z,5)) totheliteras2 and 28.

We wish procedures to be first-class values in our language. Thus we want
Expressed Value = Denoted Value = Number + ProcVal

where ProcVal isthe set of values representing procedures. Our next task is to determine what



information must be included in a value representing a procedure. To do this, we consider what
happens at procedure-application time.



When a procedure is applied, its body is evaluated in an environment that binds the formal
parameters of the procedure to the arguments of the application. Variables occurring free in the
procedure should also obey the lexical binding rule. This requires that they retain the bindings that
werein force at the time the procedure was created. Consider the following example:

let x =5inlet f =proc (y, z) +(y,-(z,x)) X =28 in (f 2 x)

When f iscalled, its body should be evaluated in an environment that bindsy to 2, z to 28, and x
to 5. Recall that the scope of the inner declaration of x does not include the procedure declaration.
Thus from the position of the reference to x in the procedure's body, the nearest lexically
enclosing declaration of x isthe outer declaration, which associates x with 5.

In order for a procedure to retain the bindings that its free variables had at the time it was created,
it must be a closed package, independent of the environment in which it is used. Such a packageis
caled aclosure. In order to be self-contained, a closure must contain the procedure body, the list
of formal parameters, and the bindings of its free variables. It is convenient to store the entire
creation environment, rather than just the bindings of the free variables, but see exercise 3.27 for
an alternative. We sometimes say the procedure is closed over or closed in its creation
environment.

We can think of ProcVal as a datatype; the interface consists of cl osur e, which tells how to
build a procedure value, and appl y- pr ocval , which tells how to apply a procedure value.
When a procedure is applied, its body is evaluated in an environment that binds the formal
parameters of the procedure to the arguments of the application. Therefore these procedures
should satisfy the condition

(apply-procval (closure ids body env) args) = (eval-
expressi on body (extend-env ids args env))

According to the methodology described in section 2.3.2, we can employ a procedural
representation for procedures by defining cl osur e to have avalue that is a procedure that
expects an argument list.

(define closure (lanmbda (ids body env) (lambda (args) (eval -
expressi on body (extend-env ids args env)))))



(define apply-procval (lanbda (proc args) (proc args)))

Alternatively, since closures are the only kind of procedure valuesin our language, we can define ProcVal as an abstract
syntax tree representation by writing

(define-datatype procval procval? (closure (ids (list-
of synbol ?)) (body expression?) (env environnent?)))

In the abstract syntax tree representation for procedures, appl y- pr ocval usescases to take the closure apart and
then invokes the body of the closure in the appropriately extended environment:

(define apply-
procval (Il anmbda (proc args) (cases procval proc (closure (ids body env) (eval -
expressi on body (extend-env ids args env))))))

Now we can see how to modify eval - expr essi on to handle programmer-defined procedures. This client code
mani pul ates procedures only through the ProcVal interface, so it isindependent of the representation of procedures.

When apr oc expression is evaluated, al that isdoneisto build a closure and return it immediately.

(define eval -expression (lanbda (exp env) (cases expression exp| (proc-
exp (ids body) (closure ids body env)) ..)))

The body of the procedure is not evaluated here: it cannot be evaluated until the values of the formal parameters are
known, when the closure is applied to some arguments.

When an application is evaluated, the operator and the operands are evaluated, and the results are sent to appl y-
pr ocval , which knows about the representation of procedures:



{define eval-sxpression
(lambda {exp env)
{cases expression exp
lapp-exp (raber rands)
(let {iproc (eval-expression rator env))
largs (ewval-rands rands env)}]
(if (procval? proc)
{apply-procval proc args)
{ecpl:error ‘eval-expression
"Attempt to apply non-procedure -s" proc)il)
caadl}

The operands are also called the actual parameters. These are expressions, and should not be confused with their values, which we consistently
call the arguments to the procedure, nor should they be confused with the bound variables or formal parameters of the procedure that will be
bound to them.

The interpreter is shown in figure 3.7. To see how all thisfits together, let us consider a simple calculation. In this calculation, we write «exp» to
denote the abstract syntax tree associated with the expression exp, and we write [x=a, y=b] env in place of (ext end-
env '(x y) '(a b) env).

(eval -

expression <<let x =5 inlet x = 38 f = proc (y, z) *
(y, +(x, 2)) g = proc (u) +(u,x) in (f (g3 17)

>> env0) = bind x and evaluate the body of thel et (eval -

expression <<let x = 38 f = proc (y, z) *(y, +(x,

z)) g = proc (u) +(u,x) in (f (g 3) 17)

>> envl) whereenvl = [x = 5] env0=hindx, f, and g and evaluate the body of thel et ( eval -
expression <<(f (g 3) 17)>> env2) whereenv2 = [x = 38, f = (closure (y z) <<*
(y, +(x,z))>> envl), g = (closure (u) <<+(u,x)>> envl) ] envl=rulefor app-expin
eval -expression(let ((proc (eval -expression <<f>> env2)) (args (eval -rands ' (<<(g 3)

>> <<17>>) env2))) (apply-procval proc args))



(define eval-expression
(lambda (exp env)
(cases expression exp
(lit-exp (datum) datum)
{(var-exp (id) (apply-env env id))
{(primapp-exp (prim rands)
(lec ({args (eval-rands rands env)))
{apply-primitive prim args)))
(1f-exp (rcest-exp true-exp false-exp)
(if (true-value? (eval-expression test-exp env))

{(eval -expression CLrue-exp env)

{eval-expression false-exp env)))

(let-exp (ids rands body)
(let ({args (eval-rands rands env)))

{eval -expression body (extend-env ids args env))))
| (proc-exp (ids body) (cleosure ids body env))
(app-exp (rator rands)

{let (({proc (eval-expression rator env))
largs (eval-rands rands env)))
(i1f (procwval? proc)
(apply-procval proc args)
(eopl:error ‘eval-expression
"Attempt to apply non-procedure -~-s" proc))))

Fr)

Figure 3.7 Interpreter with user-defined procedures

Before finishing this calculation, let uswork on (g 3) inenv2:

(eval -expression <<(g 3)>> env2)=rulefor app- expineval - expressi on
(let ((proc (eval -expression <<g>> env2)) (args (eval -

rands ' (<<3>>) env2))) (apply-procval proc args))=evaluatetherator
andtherands(l et ((proc '(closure (u) <<+(u,Xx)

>> envl)) (args '"(3))) (apply-procval proc args)) = substitutethe
valuesof pr oc and ar gs(appl y-procval ' (closure (u) <<+(u,x)

>> envl) ' (3))



= definition of appl y- procval (eval - expressi on <<+(u,x)>> [u = 3] envl)= 3 + 5 = 8
Now we can finish the main calculation:

(let ((proc '(closure (y z) <<*(y, +(x,2z))
>> envl)) (args '(8 17))) (apply-procval proc args)) =substtutethe valuesof proc
andar gs(appl y-procval ' (closure (y z) <<*(y,+(x,z))>> envl) '(8 17))=déefinition
of appl y- procval (eval - expression <<*(y,+(x,z))>> [y =8, z = 17] envl)
=8* (5+17) =8 * 22 = 176

Exercise 3.19 [ *] Test user-defined procedures with the interpreter of figure 3.7.

Exercise 3.20 [ * *] Modify the interpreter to signal an error if aclosureis called with the wrong number of arguments.

First-class procedures are extremely powerful. Consider the following program:

l et makemult = proc (maker, Xx) if x t hen +(4, (maker maker -
(x,1))) else Oin let times4 = proc (x) (makenmult makemult x) in (times4 3)

This program cal culates a multiple of 4 by repeated additions, essentially simulating a recursive program.
Exercise 3.21 [ *] Use the tricks of the program above to write a procedure for factorial in the defined language of this section.

Exercise 3.22 [ * *] Use the tricks of the program above to write the pair of mutually-recursive procedures, odd and even asin section
3.6, in the defined language of this section.

In an implementation that uses a ribcage implementation for environments, the lexical address of avariable reference,
as calculated in section 1.3.2, tells us exactly where in the environment the variable reference will appear: if the
variable reference v getslexical address (d p), then the variable will appear in the d-th rib at position p.



Exercise 3.23 [ % *] Write alexical-address calculator, like that of exercise 1.31, for the language of this
section. The calculator should take an abstract syntax tree and produce a similar abstract syntax tree, except

that every occurrence of (var - exp v) should be replaced by (I exvar - exp vd p), where (d p) isthe
lexical address for this occurrence of the variablev. Add | exvar - exp asanew variant of the data type
expr essi on. With SLLGEN, an easy way to do thisisto add a new production to the grammar.
Alternatively, write out the def i ne- dat at ype by handinstead of using sl | gen: nake-
def i ne- dat at ypes. (Hint: edit the list produced by S| | gen: | i st - def i ne-

dat at ypes).

Exercise 3.24 [ *] Instrument the interpreter to illustrate the fact that each variable isfound at the position
predicted by itslexical address. To do this, modify the interpreter to take the output of the lexical-address

calculator from the preceding exercise. Then modify eval - expr essi on sothat it sendsto appl y-

env both the identifier and the lexical address for each variable reference. The procedure appl y- env
should look up the variable using the identifier in the usual way. It should then compare the lexical addressto
the actual rib and position in which the variable is found, and print an informative message.

A consequence of this observation is that lexically-bound variables need not appear at all in the
syntax trees processed by the interpreter. One can simply replace each lexically-bound variable
with its lexical address.

Exercise 3.25 [ * *] Implement the language of this section using this idea. Modify the lexical-address
analyzer of exercise 3.23 so that its output for a variable reference includes the lexical address but not the
variable name. Then create a namel ess-environment abstraction with interface

(empt y- nanel ess- env) ( ext end- nanel ess-env val s env) (appl y- nanel ess-
env env depth position)

Applying the procedureappl y- nanel ess- env toenv, depth,andposi ti on looksupthe
posi t i on-thvariableinthedept h-thrib of €NV, in the fashion of the procedureappl y- env-

| exi cal of section 2.3.4. Last, modify eval - expr essi on, cl osure,andappl y-

pr ocval to use nameless environments.

Exercise 3.26 [ * *] Repeat the preceding exercises for an implementation using flat environments (exercise
2.23). Modify the lexical-address analyzer to predict wherein aflat environment the variable reference will be
found. The resulting lexical address will be an integer. Modify the interpreter to use these integers as lexical
addresses, asin the preceding exercise.

Exercise 3.27 [ *] When we build a closure, we have kept the entire environment in the closure. But of course
all we need are the bindings for the free variables. Modify the interpreter to use the following definition of

cl osur e:



(define closure (lanbda (ids body env) (let ((freevars (set-diff (free-

vars body) ids))) (let ((saved-env (ext end-

env freevars (map (lambda (v) (appl y-
env env v)) freevars) (empty-

env)))) (lanbda (args) (eval - expressi on body (extend-env ids args saved-
env)))))))

whereset - di f f takesthe difference of two sets. Thisis called the flat closure representation. The environment of such a closure consists of
exactly onerib comprising its free variables and their values. What would the analogous representation ook like if we used an abstract syntax tree
representation?

Exercise 3.28 [ * * *] Modify the |exical-address analyzer to predict where in the environment of each flat closure each free variable reference will be
located. The lexical-address analyzer and C| 0SUr € will have to agree on the order in which the free variables appear in the rib. Then modify the
interpreter to use these lexical addresses instead of variable names.

Exercise 3.29 [ *] Add anew kind of procedurecalled at r acepr ocC tothelanguage. At r acepr oc worksexactly likeapr OC, except that it
prints a trace message on entry and on exit. Use this facility to trace the behavior of thet i Mes4 program above.

Exercise 3.30 [ * %] Dynamic binding (or dynamic scoping) is an aternative design for procedures, in which the procedure body is evaluated in an
environment obtained by extending the environment at the point of call. For examplein

let a =3inlet p = proc (x) +(x,a) a=>5 in*(a, (p 2)
the ain the procedure body would be bound to 5, not 3. Modify the interpreter of figure 3.7 to use dynamic binding. Represent defined-language
procedures with Scheme procedures of theform (| anbda (args env) ... ). Do these procedures have any freelexical variables?

Exercise 3.31 [ * *] Another approach to implementing dynamic binding is to store all environment bindings on a global stack, which pairs variable
names with their values. Bindings are pushed onto this stack when a procedure is called and popped from the stack when the procedure returns. Modify
the interpreter of figure 3.7 to



implement dynamic binding in this way. How does the efficiency of this binding method compare with lexical
binding, both when lexical distance analysisis used with lexical binding and when it is not?

Exercise 3.32 [ *] With dynamic binding, recursive procedures may be bound by | €t ; no special mechanism
is necessary for recursion. Thisisof historical interest, because in the early years of programming language
design other approaches to recursion, such as those discussed in section 3.6, were not widely understood. To
demonstrate recursion via dynamic binding, test the program

et fact = proc (n) addl(n)in let fact = proc (n) if zero?
(n) then 1 el se *(n, (fact subl
(n))) in (fact 5)

using both lexical and dynamic binding. Write the mutually-recursive procedureseven and odd asin
section 3.6 in the defined language with dynamic binding.

Exercise 3.33 [ * *] Unfortunately, programs that use dynamic binding may be exceptionally difficult to
understand. For example, under lexical binding, consistently renaming the bound variables of a procedure can
never change the behavior of a program: we can even remove al identifiers and replace them by their lexical

addresses, asin exercise 3.25.For example, under dynamic binding, the procedure pr oc () areturnsthe
value of the variable a in its caller's environment. Thus, the program

let a =3 p =proc () ainlet f = proc (x) (p) a=2>5 in (f 2)

returns 5, since 's value at the call siteis 5. What if f 'sformal parameter were a?

3.6 Recursion

We look now at how recursion may be added to our interpreter. In most languages only procedures
may be defined recursively. Allowing other possibilities, asin Scheme, is sometimes useful but
presents additional complications. Therefore we use a variation on Scheme's syntax that restricts
the right-hand side to pr oc-like expressions as presented in the grammar:



{expression) = letrec
{{identifier} ({(identifier}}'*") = (expression)}
in {expression)
letrec-exp
(proc-names idss bodies
letrec-body)

The left-hand side of arecursive declaration is the name of the recursive procedure and alist of
formal parameters. To the right of the = isthe procedure body. Here are a couple of familiar
examples.

letrec fact (x) =if zero?(x) then 1 else * (x, (fact subl(x)))in (fact 6)
letrec even (x) = if zero? (x) then 1 else (odd subl
(x)) odd (x) =if zero? (x) then 0 else (even subl(x))in (odd 13)

To evaluateal et r ec expression, we evaluate the body of the expression in an environment that
has the desired behavior:

(define eval -

expression (lanmbda (exp env) (cases expression exp (letrec-

exp (proc-nanes idss bodies |etrec-body) (eval -expression letrec-
body (ext end-env-recursively proc-

nanes i dss bodies env))) o))

The complete definition of eval - expr essi on isshown in figure 3.8.

The new procedure ext end- env-r ecur si vel y isadded to the environment interface. We
specify the behavior of ( ext end- env-recursively proc-nanes idss bodies
env) asfollows:

Let € be (ext end- env-recursively proc-nanes idss bodies €). Then

1. If name isone of thenamesin pr oc- nanes, andi ds and body are the corresponding
formal parameter list and procedure body, then (appl y- env € nane) =(cl osure ids
body €).

2. 1f not, then (appl y- env € nane) = (appl y- env enane).



(define eval-expression
(lambda (exp enwv)
{cases exXpresslon exp
(lit-exp (datum) datum)
(var-exp (id) (apply-env env id))
(primapp-exp (prim rangs)

(let (f(args (eval-rands rands env)))

{apply-primitive prim args)))
[if-exp (test-exp Erue-exp false-exp)

{if (true-value? (eval-expression test-exp env))
(eval-expression CLrue-exp env)
[eval-expression false-exp envl)))

(let-exp (ids rands body)
(let ({args (eval-rands rands env))]
{eval-expression bedy (exbend-env ids arge env)l)))
(proc-exp [(ids body) (closure ids body env))
[app-exp (rator rands)
{let (({proc (eval-expression rator env))
largs (eval-rands rands env)))
(if [(procwval? proc)
lapply-procval proc args)
{ecpl:error ‘eval-expression
"httempt to apply non-procedure ~-s5" procll))
[letrec-exp (proc-names idss bodies letrec-body)

{eval-expression letrec-body
(exbend-env-recuraively

proc-names idss bodies env)))
1

Figure 3.8 Interpreter with | et r ec

We can implement ext end- env-r ecur si vel y inany way that satisfies these requirements,
including those of section 2.3. Representing environments with the procedural representation of
section 2.3.2, using | et r ec itself, we can write ext end- env-r ecur si vel y (figure 3.9).

Given asymbol sym we first determineif it isamong the names used in pr oc- nanes. If itis
present, we return a closure consisting of the corresponding formal-parameter list, the
corresponding body, and the recursive environment. Otherwise, we look up the symbol in the old
environment ol d- env. Thisimplements the behavior specified above.



(define extend-env-recursively (lanbda (proc-nanmes idss bodies ol d-

env) (letrec ((rec-env (lanbda (sym (let ((pos (rib-find-
position sym proc-

nanes))) (i f (number? pos) (cl osure (list-
ref idss pos) (list-ref bodies pos) rec-

env) (apply-env ol d-env synj)))))) rec-env)))

Figur e 3.9 Recursive environments

If we represent environments using the abstract syntax representation of section 2.3.3, then we add a new
variant for this new environment constructor, and move the code above into appl y- env. Seefigure 3.10.

In each of these implementations, we build a new closure each time a procedure is retrieved from the
environment. Thisis unnecessary since the environment for the closure is always the same. If we use a
ribcage representation like that of figure 2.4, we can build the closures only once, by building an
environment with a circular structure like that of figure 3.11.

Figure 3.12 shows the code that builds the run-time structure of figure 3.11. This takes us back to the
original two-variant environment data type. To create a recursive environment, we first build a vector to
hold the values, and then an environment env with anew ext ended- env- r ecor d that contains the list
of procedure names and the new vector. Then, for each procedure declaration, we create a closure containing
the procedure's formal parameters, its body, and env, and we insert this closure into the corresponding
position in the vector. This creates a structure like that shown in figure 3.11. Last, we return this new
environment. The procedurei ot a takes a positive integer n and builds alist of integersfromOton — 1.

Exercise 3.34 [ * *] Extend exercise 3.25to handle| et r eC.Exercise 3.35[* *] Implement aversionof | et r ec
that builds each closure at most once. If the closure is never retrieved, it should never be built.



{define-datatype environment environment?
(empby-env-record)
(extended-env-record

(syms (list-of symbol?))

(vals wvector?)

(env environmentZ?))
(recursivelyv-extended-env-record

(proc=namas [list-of symbol?))

(idss (list-of (list-of symbol?]))

(hodies (list-of expression?))

[env environment?) ) )

{define extend-env-recursively
(lambda (proc-names idss bodies old-env)
[recursively-extended-env-record
proc-names ides bodies old-env)))

{define apply-env
(lambda (env sym)
[cases environment enw
(empry-env-record ()
{eopl:error ‘empty-env "No binding for -~s5" sym))
{extendad-env-record (syms vals old-env)
{let {((pos (rib-find-position sym syms)))
(if (numher? pos)
{(vector-ref wvala pos)
{apply=-env old-env sym))})
{recursively-extended-env-record (proc-names idss
bodies old-env)
(let {((pos (rib-find-position sym proc-names)))
(if (number? pos)
(closure
{list-ref idss pos)
{list-ref bodies pos)
eV
{apply-env eld-env sym)))l)))

Figure 3.10 Abstract syntax tree representation of recursive environments




T
list of nares "|"|_]_. - - e
C 1

—— T
F . . —
even = |'J Ill = closure (x) <<if zero?(x] then 1 else lodd sublixh)==
? | clogure (x} =<if zero?({x} then 0 alse {even subl (%)) !
odd - _‘ﬂ Sl

'\
A

- veclor of valires

[
L

T

awext il

I
rest of eniironmert

The boxes with two fields represent cons cells; the ones with three fields

represent excended-env-record nodes.

Figure 3.11 Circular environment structure for even and odd

(define extend-env-recursively (lanbda (proc-names idss bodies ol d-

env) (let ((len (length proc-names))) (let ((vec (nake-

vector len))) (let ((env (extended-env-record

names vec ol d-env))) (for-

each (lanbda (pos ids body) (vector-

set! vec pos (closure ids body env))) (iota len) idss bodies)

Figure 3.12 Circular data structure representation of recursive environments

proc-

env)))))




Exercise 3.36 [ * *] Write a program that behaves differently under the implementation of figure 3.12 than it
does under the other two implementations shown in this section. (Hint: retrieve arecursive procedure from an

environment twice, and use €(]? (exercise 3.17) to seeif the same closure is returned.) How can this
difference be reconciled with the contention that al three implementations satisfy the specification of
ext end- env-recursivel y?

3.7 Variable Assignment

We next extend our language to allow assignments to variables. This means that each identifier
must denote the address of a mutable location in memory. We call such an address a reference,
and it is the contents of these references that are modified by variable assignment. Thus denoted
values are references whose contents are expressed val ues:

Denoted Value = Ref(Expressed Value)
Expressed Value = Number < ProcVal

References or locations are sometimes called L-values. This reflects their association with
variables appearing on the left-hand side of assignment statements. Analogously, expressed
values, such as the values of the right-hand side expressions of assignment statements, are known
as R-values.

We choose the concrete syntax

(expression) &= set (idenfifier) = {(expression)

varagssign-exp (id rhs -r}:-'.g}ll'

This adds a new variant to our data type for expressions. The new variant can be written as
(varassi gn-exp (id synbol ?) (rhs-exp expression?))

What is the difference between assignment and binding? A binding creates a new association of a
name with a value, while an assignment changes the value of an existing binding. Binding is about
the association of names with values; assignment is about the sharing of values between different
procedures. When a binding is shared by multiple procedures, a change by oneis seen by all.
Consider the following program in the defined language:



let x = 0in letrec even () = if zero? (x) then 1 else let d = set x = subl
(x) in (odd) odd () =if zero? (x) then 0 else let d = set x = subl
(x) in (even) inlet d =set x = 13 in (odd)

Heretheidiom| et d =expi n exp wheredisadummy variable, is used to accomplish sequencing (exercise 3.39).

The two procedures even and odd share the variable x. They communicate not by passing data explicitly, as the similar program of section 3.6 does, but
by changing the state of the variable they share. Thisis convenient when two procedures might share many quantities; one needs to assign only to the few
guantities that change from one call to the next. Similarly, one procedure might call another procedure not directly but through along chain of procedure
calls. They could communicate data directly through a shared variable, without the intermediate procedures needing to know about it. Thus
communication through a shared variable can be akind of information hiding.

For example, consider the redirection of input and output. 1/O operations usually use "standard" input and output ports (connected, say, to a keyboard and
the display), unless a specific port isindicated. But we may want all the output generated as a result of invoking a particular procedure call, suchas(p 1
2) , to be directed to a port associated with anew file, say por t , instead of the standard output port. How could the output procedure know what port to
use? It would be necessary to pass the port as an argument to p. The procedure p would then have to pass the port to any proceduresit calls that might do
output, and these procedures would have to do the same. Some of these procedures may not do any output directly, but they must still receive and pass on
the output port if any procedure they call does output, either directly or by calling other procedures. This seems to violate modularity, especially since
there may be other parametersto pass, such asline lengths, fonts, etc. If the output procedure were constructed to obtain its port and other parameters from
non-local variables, then the procedure p could communicate this information directly by assigning to these variables, and the intermediate procedures
need not be concerned.



Another use of assignment is to create hidden state directly through the use of private variables.
Consider the following program:

let g =1let count = 0O in proc () let d = set count = addl
(count) in countin +((g),(9))

Here the procedure g keeps a private variable that stores the number of times g has been called, so
this program evaluates to 3. We use asimilar technique to generate symbolsin section 8.4.

For our example language, we choose to create a new reference for each formal parameter at every
procedure call. This policy is known as call-by-value. Under call-by-value, when we assignto a
formal parameter, the assignment is local to the procedure. For example,

let x = 100in let p = proc (x) let d = set x = addl
(x) inx in+((p x),(p X))

returns 202, because a new referenceis created for x at each of the procedure calls. Thus, at each
procedure call, the assignment affects only the inner binding. Thisisin contrast to the preceding
example, in which all the calls to the procedure g shared the same variable count .

In order to implement variable assignment, we introduce ther ef er ence datatype. The
operations on this datatype are der ef andset r ef ! , which access or store the value in the
mutable location.

We begin with a simple implementation of references. We assume the familiar environment
representation with a value vector in each rib. References are then elements of rib vectors, which
areassignable using vect or - set ! . Since avector element is not a Scheme object, we represent
areference as a data type containing the vector and the position of the desired L-value within this
vector.

(define-datatype reference reference? (a-
ref (position integer?) (vec vector?)))

A picture of areferenceis shown in figure 3.13. The operations for this implementation are
deref andsetref!.Wedefinethesein terms of
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the structure, as shown on the right-hand side of the diagram.,

Figure 3.13 Representation of references

primtive-deref andprimtive-setref! becausewereusethe latter two proceduresin
our later implementations of references.

(define primtive-deref (lanbda (ref) (cases reference ref (a-
ref (pos vec) (vector-ref vec pos)))))(define primtive-
setref! (lanbda (ref val) (cases reference ref (a-

ref (pos vec) (vector-set! vec pos val)))))
(define deref (lanbda (ref) (primtive-deref ref)))
(define setref! (lanbda (ref val) (primtive-setref! ref val)))

Exercise 3.37 [ *] Add to the interface for references a constructor newr ef s, which takes alist of values
and returns alist of references; each reference initially contains the corresponding value as its contents. Why
would an interface containing Newr ef s asa constructor be better than one containing a- r ef ?



(define apply-env (lanbda (env syn) (deref (apply-env-ref env sym)))
(define apply-env-

ref (lanbda (env sym (cases environnent env (empty-env-
record () (eopl:error 'apply-env-

ref "No binding for ~s" syn)) (ext ended- env-

record (syms vals env) (let ((pos (rib-find-

position symsyns))) (if (nurber? pos) (a-
ref pos vals) (apply-env-ref env syn)))))))

Figure3.14appl y- env andappl y- env-r ef

Exercise 3.38 [ *#] Why isit that we do not need to include a constructor in the interface for references?

We revisit our environment abstraction so we can make use of references. We assume that the
denoted values in an environment are of the form Ref(X) for some set X. We reveal this structure
by introducing the operation appl y- env-r ef into the interface. The procedure appl y- env-
r ef isvery similar to the previous definition of appl y- env, but when it finds the matching
identifier, it returns the reference instead of its value. The procedure appl y- env can then be
defined intermsof appl y- env-ref andder ef . Seefigure 3.14.

To implement variable assignment, we now simply add the following clause to eval -
expr essi on:

(varassign-exp (id rhs-
exp) (begin (setref! (appl y-env-
ref env id) (eval -expressi on rhs-exp env)) 1))

We explicitly return 1 because the return value of set r ef ! isunspecified, and we must always
return an expressed value.



{define eval-expression
{(lambda (exp =nv}
icases expression exp
{lit-exp (datum) datum)
(var-exp (id) {apply-env env id))
iprimapp-exp (prim randsa)

(lect {{args (eval-rands rands env))]

{apply-primitive prim args)})
(if-exp (test-exp true-exp false-eaxp)

{if (true-value? (eval-expression test-exp env))
teval-expression Lrus-exXp env)
(eval-expression false-exp env)))

{let-exp (ids rands body)

{let {(args {(eval-rands rands env}))

{eval -expresasion body (extend-env ides args env))))
(proc-exp [(ids body) (closure ids body env))
{app-eXp (rator rands)

{let {(proc {(eval-expression rator env))

[args (eval-rands rands eanv)))
{if (procval? proc)
(apply-procval proc args)
{(ecpl:error ‘eval-expression
"Attempt to apply non-procedure ~s" procll))
(letrec-exp (proc-names ides bedies letrec-body)

(eval-expression letrec-body
jextend-anv-recursively

proc-names idss bodies enwv)) )
(varassign-exp (id rha-exp)

(begin

{setref!
{apply-env-ref env id)
(eval -expression rhs-exp envi)

1))

14

Figure 3.15 Interpreter with variable assignment using call-by-value




Exercise 3.39 [ *] Add the expression begi N to the language.

{expression) = begin (expression) {; {expression}}’ end
bogin-exp (exp oxpos)

A begi n expression may contain one or more subexpressions separated by semicolons. These are eval uated

in order and the value of the last is returned. Implement this by modifying eval - expr essi on.Exercise
3.40 [ * *] Define aformto be a definition or expression using the following concrete syntax

{form) u= define {identifier) = {expression)
n= {expressiong

This syntax intentionally prevents definitions (as opposed to loca declarations) from appearing inside
expressions.Modify the read-eval-print loop so that it reads a sequence of forms, with definitions performed
and expressions evaluated as they are encountered. A definition is performed by first evaluating the given
expression in the initial environment. If the initial environment already contains a binding for the given
variable, the expression's value is assigned to this binding asif by atop-level assignment. If the given variable
is not bound in the initial environment, the initial environment should be extended to bind the variable to a
location containing the expression's value; this will require some changes in the environment abstraction. After
performing a definition, the next prompt is printed without printing any value. After evaluation of an
expression, the value of the expression should be printed, as usual, before prompting for the next definition or
expression. Implement and test even and 0dd (from section 3.6) as definitions.Exer cise 3.41 [ * ]
Another design for assignment is to have locations become expressed values, and have alocation,
dereferencing, and assignment be explicit in the program. Then we would have

l",xpr-::a:eml Value =  Number + ProcVal + Ref(Expressed Value)
Denoted Value = Expressed Value

Modify the interpreter of figure 3.15 to use this set of expressed values, with new primitives
cell, contents,andsetcell for creating, dereferencing, and mutating cells asin exercise
2.26. In thislanguage, our procedure with a private counter (page 100) would look something like

let g = let count = cell
(0) in proc () begi n setcel |l (count, addl
(contents(count))); content s(count) endin +((9),

(9))



Exercise 3.42 [* *] Add arrays to this language. Introduce new primitivesar r ay, arrayref,andarrayset that create, dereference, and update arrays. This leads to
Arr = (Rel{Expressed Value))*

Expressed Value = Number + ProcVal-+ Arr
Denoted Value = RefilExpressed Value)

where the first occurrence of Ref can be a different implementation of references (perhaps using the fact that a Scheme array is already a sequence of references) than the one described in this section. What should be the result of the following program?
let a = array(2) p = proc (x) let v = arrayref(x,1) in arrayset(x,1,add1(v))in begin arrayset(a, 1,0); p (a); p (a); arrayref(a, 1) end
Herear ray ( 2) isintended to build an array of size 2.
Exercise 3.43 [* *] Modify the interpreter of figure 3.15 by defining primitivesder ef andset r ef usingder ef andset r ef !, respectively. Then add a new production
{expression) = ref (identifier)

ref-exp [(id)

This differs from the language of exercise 3.41, since references are only of variables. This alows us to write familiar programs such as SWap within our call-by-value language. What should be the value of this expression?

let a =3 b =4 swap = proc (X,
y) let tenmp = deref (x) in begin setref (x, deref (y)); setref (y, tenp) endi n begin (swap ref a ref b);
(a, b) end

What are the expressed and denoted values of this language?



Exercise 3.44 [ *] Now that variables are mutable, we can build recursive procedures by assignment. For example

letrec times4 (x) =if x then + (4, (times4 subl

(x))) else 0in (tinmes4 3)

can be replaced by

let tines4 = 0in begin set times4 = proc (x) if x
(times4 subl(x))) el se 0; (times4 3) end

Trace this by hand and verify that this translation works.

then + (4,

Exercise 3.45 [ * *] In the interpreter of figure 3.15, all variable bindings are mutable (asin Scheme). Another alternative isto allow both mutable

and immutable variable bindings:

Expressed Value = Number ProcVal
Denoted Value = Ref(Expressed Value) + Expressed Value

Variable assignment should work only when the variable to be assigned to has a mutable binding. Dereferencing occurs implicitly when the denoted
valueis areference.Modify thisinterpreter and its accompanying environment abstraction so that | et introduces immutable bindings, but
| et mut abl e introduces mutable bindings. The| et nmut abl e expression isanew special form, with asyntax similar tothe| et form.

{expression} m= letmutable {{identificy) = (expression}}’ in {expression)
letmutable-exp (ids rands body)

Exercise 3.46 [ * *] Adapt the interpreter of figure 3.15 to use the representation of closures from exercise 3.27, in which only the bindings of free

variables are kept in the closure.

Exercise 3.47 [ * *] We suggested earlier the use of assignment to make a program more modular by alowing one procedure to communicate

information to a distant procedure without requiring intermediate procedures to be aware of it. Very often



such an assignment should only be temporary, lasting for the execution of a procedure call. Add to the
language afacility for dynamic assignment (also called fluid binding) to accomplish this. Use the production

{expression) m= setdynamic {identifier) = (expression} during (expression)
secdynamic-exp (id rhs-exp body)

The effect of theSet dynami C expression isto assign temporarily thevalue of r hs- exp toi d,

evaluate body, re-assigni d toitsorigina value, and return the value of body. Theidentifier i d must
aready be bound. For example, in

let x = 4inlet p = proc (y) + (X,
y) in + (setdynamic x = 7 during (p 1), (p 2))

the value of X, which isfreein procedure P, is7inthecal (p 1),butisresetto4inthecal (p 2),so
the value of the expressionis 8 + 6 = 14.

Exercise 3.48 [ * * *] Our understanding of assignment, as expressed in the interpreter of figure 3.15, depends
on the semantics of side effectsin Scheme. In particular, it depends on when these effects take place. If we
could model assignment without using Scheme's side-effecting operations, our understanding would not be
dependent on Scheme in this way. We can do this by modeling the state of a program not as a collection of
mutable locations but as afunction, called the store. The domain of the store function is some arbitrary set of
addresses (say the nonnegative integers) that represents locations, and its range is the set of expressed values.
Mutation of alocation in the store isthen modeled by extending this function to associate the location with the
new value. This new association supersedes any earlier associations for the same location. Assume that each

invocation of (I ocat i on) produces an unused integer. Alternatively, model the store as an abstract syntax
treeand usethe "l engt h" of the store to retrieve the next unused location.In order for the new store to be
used in subsequent evaluation, it must be returned by eval - expr essi on and then passed as an
additional argument to interpreter procedures (eval - expr essi on, eval -rands, appl y-
procval , etc.) that might need it. Consider figure 3.16. Every procedure that might modify the store
returns not just its usual value but an ansSWer consisting of the value and a new store. The trickiest

procedure to modify iseval - r ands. It can no longer just use map. Instead, it must evaluate the operands
in some specific order, with the store resulting from each evaluation being used in the next evaluation.
Complete this definition of eval - expr essi on.

3.8 Parameter-Passing Variations

The language design of section 3.7, in which formal parameters are bound to locations of operand
values, has used call-by-value. Thisisthe most commonly used form of parameter passing, and is
the standard against which



(define-datatype answer answer? (an-

answer (val expval ?) (store store?)))(define eval -

expression (lambda (exp env store) (cases expression exp (var -
exp (id) (an-answer (apply-store store (apply-

env env id)) store)) (varassign-exp (id rhs-

exp) (cases answer (eval -expression rhs-exp env store) (an-
answer (val new store) (an-answer 1 (ext end-
store (apply-env env id) val store))))) (if-exp (test-exp true-

exp fal se-exp) (cases answer (eval -expression test-

exp env store) (an-answer (val new store) (if (true-
val ue? val) (eval -expression true-exp env new

store) (eval -expression fal se-exp env new

store))))) o))

Figure 3.16 Store-passing interpreter for exercise 3.48

other parameter-passing mechanisms are usually compared. In this section we explore alternative
parameter-passing mechanisms.

Consider the following expression:
let a =3 p = proc (x) set x = 4in begin (p a); a end

Under call-by-value semantics, the denoted value associated with x is areference that initially
contains the same value as the reference associated with a, but these references are distinct. Thus
the assignment to x has no effect on the contents of a's reference, so the value of the entire
expression is 3.

With call-by-value semanticsit is a big help to know that when a procedure assigns a new value to
one of its parameters, this cannot possibly be seen by its caller. Of course, if the parameter passed
to the caller containsa



reference to a mutable location, asin exercise 3.42, and the procedure modifies this location, the resulting modification will still be seen by the caller in subsequent uses of the reference.

Though this isolation between the caller and callee is generally desirable, there are times when it is valuable to alow a procedure to be passed variables with the expectation that they will be
assigned by the procedure. This may be accomplished by passing the procedure a reference to the location of the caller's variable, rather than the contents of the variable. This parameter-passing
mechanism is called call-by-reference. If an operand is simply avariable reference, areference to the variable's location is passed. The formal parameter of the procedure is then bound to this
location. If the operand is some other kind of expression, then the formal parameter is bound to a new location containing the value of the operand, just asin call-by-value. Using call-by-reference
in the above example, the assignment of 4 to x has the effect of assigning 4 to a, so the entire expression would return 4, not 3.

One common use of call-by-referenceisto return multiple values. A procedure can return one value in the normal way and assign others to parameters that are passed by reference. For another sort
of example, consider the common programming need for swapping the valuesin two variables:

let a =3 b =4 swap = proc (X,
y) let tenp = X in begin set X = vy; set y = tenp endi n begin (swap a b);
(a, b) end

Under call-by-reference, this swaps the values of a and b, so it returns 1. If this program were run with our existing call-by-value interpreter, however, it would return -1, because the assignments
inside the swap procedure then have no effect on variablesa and b.

Under call-by-reference, identifiers still denote references to expressed values, just as they did under call-by-value:

Denoted Value =  Ref(Expressed Value)
Expressed Value = Number+ ProcVal



The only change occurs when new references are created. Under call-by-value, a new referenceis
created for every evaluation of an operand; under call-by-reference, a new reference is created for
every evaluation of an operand other than a variable.

Because call-by-value creates a new location for every operand in a procedure application, we
could put the values of all the operandsin avector, and have appl y- env-r ef create areference
to the location at variable-lookup time. Under call-by-reference, however, we will need a new
location for some operands and not for others, so we need a different representation for references.

For our implementation of call-by-reference, we will use the implementation of references shown
infigure 3.17. A reference will be, as before, areference to alocation within avector. But the
vector, instead of containing expressed values, will contain either expressed values or references
to expressed values. We call these two kinds of targets direct targets and indirect targets,
respectively. A direct target corresponds to the behavior of call-by-value, in which a new location
is created; an indirect target corresponds to the new behavior of call-by-reference, in which no
new location is created. The new definitions of der ef andset r ef! look at the kind of target to
determine the expressed value to return or the location to mutate.

The procedures ext end- env and appl y- env-r ef areunchanged: ext end- env will takea
list of targets and return a vector containing those targets, and appl y- env-r ef looksup an
identifier and creates a reference to the location containing the appropriate target.

Now we can implement call-by-reference. We consider each place where subexpressions are
evaluated. For primitive applications, we simply need to evaluate the subexpressions and pass the
vauestoappl y-primtive,soineval - expr essi on wewrite

(primapp-exp (primrands) (let ((args (eval-prinmapp-exp-
rands rands env))) (apply-primtive primargs)))

whereeval - pri mapp- exp-r ands isdefined by

(define eval -pri mapp- exp-
rands (| anbda (rands env) (map (lanbda (x) (eval -
expression x env)) rands)))

For | et -bound variables, we choose to retain the call-by-value behavior, soin eval -
expr essi on wewrite



(define-datatype target target? (direct-target (expval expval ?)) (indirect-

t ar get (ref ref-to-direct-target?)))

(define expval ? (Il anbda (x) (or (nunber? x) (procval? x))))(define ref-to-
direct-

target? (lambda (x) (and (reference? x) (cases reference x (a-
ref (pos vec) (cases target (vector-ref vec pos) (direct-
target (v) #t) (indirect-target (v) #f)))))))

(define deref (lanbda (ref) (cases target (primtive-deref ref) (direct-
target (expval) expval) (indirect-

target (refl) (cases target (primtive-deref refl) (direct-

target (expval) expval) (indirect-target (p) (eopl

error 'deref "Il egal reference: ~s" refl)))))))

(define setref! (lanbda (ref expval) (let ((ref (cases target (primtive-

deref ref) (direct-target (expvall) ref) (indirect-
target (refl) refl)))) (primtive-setref! ref (direct-target expval)))))

Figure 3.17 Implementation of references for call-by-reference




(let-exp (ids rands body) (let ((args (eval -1et-exp-
rands rands env))) (eval - expressi on body (extend-
env ids args env))))

whereeval - | et - exp-rands andeval - | et - exp- r and are defined by

(define eval -let-exp-rands (lanbda (rands env) (map (lanbda (x) (eval -
| et-exp-rand x env)) rands))) (define eval -1et-exp-
rand (|l anmbda (rand env) (direct-target (eval-expression rand env))))

For procedure applications, we continue to evaluate each operand using eval - r and.

(define eval-rand (lanbda (rand env) (cases expression rand (var -
exp (id) (indirect-target (let ((ref (apply-env-

ref env id))) (cases target (primtive-

deref ref) (direct-

target (expval) ref) (indirect-

target (refl) refl))))) (el se (direct-target (eval-
expression rand env))))))

Here we must be a bit more careful. If the operand is a non-variable, then we create anew
location, as before, by returning a direct target. If the operand is avariable, it denotes a location
containing an expressed value, so we want to return an indirect target pointing to that location.
Thisisabit trickier than it first appears. If avariable is bound to alocation containing a direct
target (which must contain an expressed value, like 5), then areference to the location is returned
as an indirect target. But, if the variable is bound to another reference, then that referenceis
returned. This maintains the invariant that a reference contains either an expressed value or a
reference to an expressed value.

We show the operation of eval - r and in figure 3.18 where we depict the value ribs in the
environment of the innermost procedure body in the program
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Figure 3.18 Environments built by call-by-reference

(proc (t, u, v, w %call this pl (proc (a, b) %call this p2 (proc (x, vy, 2z) %call this p3 set y = 13 a b 6) 3 v)

56 7 8)

First the procedure p1 is applied to 5, 6, 7, and 8, yielding the value vector at the bottom of the figure. Next p2 is applied to the operands 3 and v, yielding the value vector in the middle. This vector contains 3 and a reference to the location
containing 7. In each vector element, thereisadi r ect - t ar get wrapped around each expressed value and ani ndi r ect - t ar get wrapped around each reference; these are not depicted to preserve the clarity of the picture. Finally, p3 is
invokedona, b, and6. Thevariable a contains adirect target, so x isbound to an indirect target containing a pointer to a. The variable b contains an indirect target, so y isbound to an indirect target containing a pointer to the target of b. Last, 6

isan expressed value, so z isbound to adirect target containing 6.

Exercise 3.49 [ *] Redraw figure 3.18 using the format of the left-hand side of figure 3.13. Includethedi r ect - t ar get andi ndi r ect - t ar get datastructures.



Exercise 3.50 [ * *] Implement the call-by-reference interpreter and test it with examples including primitive
applicationand| et r ec.

Exercise 3.51 [ * *] Rewrite the preceding definition of eval - r and so that targets are reused rather than
reconstructed whenever possible.

Exercise 3.52 [ *#] More than one call-by-reference parameter may refer to the same location, asin the
following program.

let b =3 p = proc (X,
y) begi n set x = 4; y endin (p b b)

Thisyields 4 since both X and Yy refer to the same location, which is the binding of b. This phenomenon is

known as variable aliasing. Here X and Y are aliases (names) for the same location. Aliasing makes it very
difficult to understand programs. Generally, we do not expect an assignment to one variable to change the
value of another. Virtually al rules for reasoning formally about programs are invalid in the presence of
aliasing.

Test the call-by-reference interpreter with programs that demonstrate aliasing.

Exercise 3.53 [ * *] In languages supporting call-by-referenceit is usual for call-by-value to be supported
a so, with amethod for specifying which isto be used for each formal parameter. Extend the implementation
of this section in thisway.

Exercise 3.54 [ * * *] Most languages support arrays, in which case array references are generaly treated like
variable references under call-by-reference. That is, if an operand is an array reference, the location referred to,
rather than its contents, is passed to the called procedure. This allows, for example, a swap procedure to be
used in commonly occurring situations in which the values in two array elements are to be exchanged. Add
array primitives like those of exercise 3.42 to the call-by-reference language of this section, and extend

eval - r and to handle this case, so that, for example, a procedure application like ( Swap
(arrayref a i) (arrayref a j)) will work asexpected.

Exercise 3.55 [ *] Call-by-value-result is a variation on call-by-reference. In call-by-value-result, the actual
parameter must be a variable. When a parameter is passed, the formal parameter is bound to a new reference
initialized to the value of the actual parameter, just asin call-by-value. The procedure body is then executed
normally. When the procedure body returns, however, the value in the new reference is copied back into the
reference denoted by the actual parameter. This may be more efficient than call-by-reference because it can
improve memory locality. Implement call-by-value-result and test it with a program that produces different
answers using call-by-value-result and call-by-reference.



We now turn to avery different form of parameter passing, called lazy evaluation. Sometimesin agiven call a
procedure never refers to one or more of its formal parameters. In this case time devoted to evaluating the
corresponding operands is wasted. It may even be that evaluation of such an operand would result in an error or
never terminate. For example, were it not for such problems, i f could be a procedure, instead of having to be a
syntactic form.

In alanguage such as Scheme that supports first-class procedures, one can delay (perhaps indefinitely) the
evaluation of an operand by encapsulating it as the body of athunk, a procedure of no arguments. Whenever a
variable is referenced, the corresponding procedure must be invoked. The actions of forming thunks and
evaluating them are called freezing and thawing, respectively.

A few languages support a parameter-passing mechanism called lazy evaluation that automates this technique.
Lazy evaluation mechanisms may differ in how they handle multiple references to the same parameter. A naive
approach would invoke the thunk every time the parameter is referred to. This policy is called, for historical
reasons, call-by-name. In the absence of side effects thisis awaste of time, since the same value is returned each
time. A more sophisticated approach, called call-by-need, records the value of each thunk thefirst timeitis
invoked, and thereafter refersto the saved value instead of re-invoking the thunk. Thisis an example of amore
genera technique known as memoization.

In the absence of side-effects, call-by-name and call-by-need always give the same answer. In the presence of
side-effects, however, it is easy to distinguish these two mechanisms. Consider, for example, the expression

let g =1let count = 0 in proc () begi n set count = addl
(count); count endin (proc (x) +(x,Xx) (9))

The procedure g returns the number of timesit is called. Under call-by-name each reference to the variable x
invokes g, so thefirst x evaluatesto 1, the second x evaluatesto 2, and the result is 3. Under call-by-need, g is
invoked only once, for the first reference to x, so both occurrences of x evaluate to 1, and the result is 2.



An attraction of lazy evaluation in all itsformsisthat in the absence of side-effectsit supports
reasoning about programs in a particularly ssmple way. The effect of a procedure call can be
modeled by replacing the call with the body of the procedure, with every reference to aformal
parameter in the body replaced by the corresponding operand. This evaluation strategy isthe basis
for the lambda calculus, in which it isreferred to as b-reduction. (See exercise 2.12.) In other
languagesit is sometimes called the copy rule.

Even with call-by-need there can be considerable overhead associated with so much freezing and
thawing activity. It is, however, possible to reduce this overhead to often-acceptable levels,
primarily by not making thunks when it can be proved that the result will not be changed.

A more important reason why call-by-name is not popular isthat it generally makesit difficult to
determine the flow of control (order of evaluation), whichin turn is essential to understanding a
program with side effects. On the other hand, if there are no side effects, the flow of control does
not affect the result of a program, so thisis not a problem. Thus lazy evaluation is popular in
purely-functional programming languages (those with no side-effects), and rarely found elsewhere.

We now add lazy evaluation to our language. As before, variables denote references to expressed
values:

Denoted Value = Ref(Expressed Value)
Expressed Value Mumber + ProcVal

We implement lazy evaluation by extending our data type of referencesto add athird kind of
target, caled athunk target. A thunk target islike a direct target, except that instead of containing
an expressed value it contains a thunk that evaluates to an expressed value. If der ef isgivena
reference containing athunk (either as adirect or indirect target), it evaluates the thunk using

eval - t hunk, which evaluates the expression contained in the thunk and returns the
corresponding expressed value; further, if the system isusing call-by-need, eval - t hunk updates
the location containing the thunk to contain instead a direct target with the expressed value. See
figures 3.19 and 3.20.

Ineval - r and we recognize literals and procedures and do not bother to freeze them, since they
evaluate quickly. We also give special treatment to operands that are variables, asin call-by-
reference and we treat thunk targets in the same way that we treat direct targets. Last and most
important, all other operands are frozen by creating athunk that delays their evaluation until
needed (figure 3.21). Thus, under call-by-need, in the expression



(define-datatype target Carget?
(direct-target
{expval expval?])
findirect-target
{ref ref-to-dirvect-target?]})
|  (thunk-target
(exp expression?)
{env environmenkt?) )]

{define ref-to-direct-target?
(lambda (]
{and
ireference? )
I:E-EIEEE l'EZEE]'.'E'.IEE 4
{a-ref [(pos vec)

(cases targeb (vector-ref weo pos)
(direct-target (v} #t}
[indirect-target (p) #E)

| (thunk-target (exp env}) #c)l)l))}

Figure 3.19 Implementation of references for call-by-name and call-by-need (part 1)

(proc (a, b)  (proc (x) (proc (y) (proc (z) + (+(x,Y),
zZ) y) X) +(a, b))15 20)

theoperand + (a, b) getsevauated only when thefirst variableisreferencedin+ (+ (X,
y), z), regardless of which variable is evaluated first, and it is evaluated only once. Each of the
other two variables refers to the same already-evaluated thunk.

Exercise 3.56 [ * *] Implement the call-by-need interpreter, but leave i f out of the language syntax and
implement it as a primitive procedure.

Exercise 3.57 [ * *] Revise the call-by-need interpreter of the previous exercise so that it becomes a call-by-
name interpreter. Then include variable asignment. Test it with a program that uses assignment in such away
that two references to the same parameter return different values.



(define deref
(lambda (ref)

(cages target (primitive-deref ref)
{direct-target (expval] expval)
{indirect-target (refl)

(cases target [(primitive-deref refl)
{direct-target (expval) expwvall)
{indirect-target (p)

ecpl:error "deref
"Illegal reference: -s" refl))
ichunk-target (exp env) {eval-thunk refi}}})
{thunk-target (exp env) (eval-thunk ref)}})]

(define eval-thunk
{lambda (ref)
(cases target (primitive-deref ref)
{thunk-target {exp env)

(let {{val {(eval-expression exp env))]}
(primitive-setref! ref {direct-target wal))
wvalll

{elae
{eopl:error ‘eval-thunk "Impossible!™)11))

(define setref!
{lambda (ref expval)
(let [(ref (cases targeb (primitive-deref ref)
{direct-target (expvall) ref)
{indirect-target (refl) refl)
I (Ehunk=-target (exp env) ref}ll}
{(primitive-asetref! ref (direct-target expvalll))}

Figure 3.20 Implementation of references for call-by-name and call-by-need (part 2)

Exercise 3.58 [* *] Add| et to the call-by-need interpreter. Use atest program that demonstrates that this

| et islazy.

Exercise3.59[**] AddSt ri ct | et tothecal-by-need interpreter. Thisissimilar tothelazy | et of

exercise 3.58, but forces the evaluation of each of its bindings.

Exercise 3.60 [ * *] When isit possible to avoid invoking i ndi r ect - t ar get fromwithineval -

rand?



{delfine eval -rand
(lambda (rand snv)
[cases expression rand
(var-exp (id)
{let {i{ref [apply-env-ref env id}))
(indirect-target
icages target (primitive-deref ref)
(direct-target (expvall ref)
lindirect-target [(refl) refl)
(thunk-target f{exp env) crel))i))
(lit-exp (davtum) (direct-target datum))
{proc-exp (ids body)
[direct-target (clasure ids body env)))
telae (thunk-target rand env)})l)

Figure3.21eval - r and for call-by-need

let conz = proc (x, y) proc (n) if mthen x else y caz = proc (b) (b 1) cdz = proc (b) (b 0))
inlet Iz = (conz random (10) 0) inlet u=(caz |z) in zero?(-((caz 1z),u))

Figure 3.22 Example for exercise 3.61

Exercise 3.61 [ * * *] The power of lazy evaluation is greatly enhanced in the presence of primitive data constructors that do not thaw one or
more of their arguments until their value is extracted from the structure. One way to accomplish thisisto represent the data constructors as
procedures. The program in figure 3.22 illustrates this approach by defining alazy version of CONS, with corresponding car and cdr
operations. With call-by-need semantics, the answer is alwaystrue, because U and ( caz | z) will always be bound to the first answer
returned by r andom ( 10) . With call-by-name semantics, there is agood chance that the result will be false, since the callsto U and

(caz 1z)inzero? (- ((caz Iz), u)) wileahinvoker andom ( 10), and there is areasonably good chance that they
will not yield the same random value.

Addconz, caz, cdz andr andomasprimitives.



3.9 Statements

So far our languages have been expression-oriented: the primary syntactic category of interest has been
expressions, and we have primarily been interested in their values. In this section we extend our
interpreter to model a simple statement-oriented language.

In our statement language, the expressed values are integers and ProcVals; the denoted values are
locations containing expressed values. The syntax of the language is given in figure 3.23. Here
<expression> refers to the language of expressions of section 3.7. The informal semanticsis
straightforward. A program is a statement. A program does not return avalue, but works by printing.
Assignment statements work in the usual way. A print statement evaluates its actual parameter and
prints the result. The compound, i f, and whi | e statements work in the usual way. Tests use the same
convention about truth as does the language of section 3.3: 0 counts as false and al other values count
astrue. A block statement binds each of the declared identifiers to an uninitialized location and then
executes the body of the block. The scope of these bindings is the body. Here are some examples.

var x,y; {x =3; y =4; print (+ (x,y))}var Xx,v,
z; {x =3, y =4, z =0; while x do {z =+ (z, y); x = subl

(x)}; prin{ (2)}
var x; {x = 3; print (x); var x; {x = 4; print (x)}; print (x)}
var f, x; {f = proc (x, y) * (X, Yy); X = 3; print ((f 4 x))}

Thefirst example prints 7. The second example prints 12 and illustrates awhi | e loop, where its
statement is executed so long asits expression istrue. The third example prints 3, then 4, and then 3
again and shows the scoping of the block statement. The fourth example prints 12 and demonstrates the
interaction between statements and expressions. A procedure value is created and stored in the variable
f . Inthelast line, this procedure is applied to the actual parameters 4 and x; since x isbound to a
location, it is dereferenced to obtain 3. Our syntax requires the two sets of parentheses here: the outer
set arefromthe pri nt - st at enent production and the inner ones are from the app production for
expressions.



(program} == {statement)
[a-program (stmc) |

{statement; ::= {identifier} = {expression}
:asaignuél':ai:qﬂqu_l; _tid exp)
= print {{expression}]
:Eh_ri nt-statemsnt (exp)

n= {{(statement}}"?’ }
compound-statement (stmts) |

- if (expression) (statement) (statement)
if-statement (exp true-stmt false-stmt)

u=while {expression] do {Statement)
while-statement (exp stmt) |

u=wvar {{identifier}}*"' ; (statement)
block-statement (ids body) |

Figure 3.23 Grammar for language of statements

It is straightforward to implement an interpreter for this language. See figure 3.24. As usual, we
follow the grammar, writing one procedure for each nonterminal. Since programs and statements
are executed for their effect rather than evaluated for their value, we call these procedures
execut e- progr amand execut e- st at enent . In the code for compound statements, we
rely on the fact that the Scheme procedure f or - each is guaranteed to process its second
argument from left to right. In the while statement, we use aone-armed i f to avoid having to
return an arbitrary value.

Exercise 3.62 [ *] Add r ead statements of theform r ead ( <identifier>) to this language. This statement
reads a nonnegative integer from the input and storesit in the given variable.

Exercise 3.63[*] A do- wWhi | e statement islikeawhi | e statement, except that the test is performed
after the execution of the body. Add do- whi | e statements to the interpreter of figure 3.24.



Exercise 3.64 [ *] Extend the block statement to allow variables to beinitialized. In the solution, doesthe
scope of avariable include the initializer for variables declared later in the same block statement?

Exercise 3.65 [ * *] Extend the block statement to allow a procedure to be declared in ablock, and add a
statement that calls a procedure with actual parameters. A procedure body should be within the scope of any
variables declared earlier in the same block statement.

Exercise 3.66 [ * * *] Extend the solution to the previous exercise so that procedures declared in asingle
block are mutually recursive. Feel free to restrict the language so that all the variable declarations in a block
are followed by all the procedure declarations.

Exercise 3.67 [ * *] Extend the language of the last exercise to include subroutines. In our usage a subroutine
islike a procedure, except that it does not return avalue and its body is a statement, rather than expression.
Also, add subroutine calls as anew kind of statement and extend the syntax of blocks so that they may be used
to declare both procedures and subroutines. How does this affect the denoted and expressed values? What
happensif a procedure is referenced in a subroutine call, or vice versa?

Further Reading

The wide use of interpreters as a vehicle for explaining the behavior of programming languages
dates back to (McCarthy, 1960; 1965), which uses a metacircular interpreter (an interpreter written
in the defined language itself) as an illustration of the power of Lisp. Our interpreters are not
metacircular, but the concept of metacircularity has been thoroughly explored in (Smith, 1982;
1984), which characterizes metacircular interpreters as an infinite tower of interpreters.

Fortran (Backus et al., 1957) was the first language to use call-by-reference, Algol 60 (Naur et al.,
1963) was the first language to use call-by-name, and Haskell (Hudak et al., 1990) was the first
practical language to use call-by-need. (Plotkin, 1975) shows how to model call-by-value and call-
by-name in the lambda calculus.



(define execute-program (lanbda (pgnm (cases program pgm (a-

program (st atenent) (execut e-statenent statement (init-env))))))
(define execute-

statenment (| anbda (stnt env) (cases statement stmt (assi gn-
statenent (id exp) (setref! (appl y-env-

ref env id) (eval - expression exp env))) (print-

st at enent (exp) (wite (eval -

expressi on exp env)) (new ine)) ( conmpound-

st atenent (statenents) (for-

each (lambda (statenent) (execut e-

statenent statenment env)) stat enent s)) (if-

statenent (exp true-statenent fal se-statenment) (if (true-

val ue? (eval - expressi on exp env)) (execut e-statenment true-

st at enent env) (execute-statenent fal se-

statenent env))) (whi | e-

statenent (exp statenent) (let loop () (if (true-

val ue? (eval - expressi on exp env)) (begin (execut e-
statenent statenent env) (loop))))) (bl ock-

statenent (ids statenent) (execut e-

st at enent st at enment (extend-env ids ids env))) )))

Figure 3.24 Interpreter for the language of statements
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4 Types

The data that programs manipulate come in many types. integers, characters, procedures, lists, etc.
Some operations are appropriate on some types of values, and others are not. An attempt to apply
an operation to inappropriate data is called atype error. In this chapter we show the same ideas we
use to interpret programs can be used to analyze our programs to ensure that no type error can
occur during execution.

In section 4.1 we explore some of the subtleties in determining whether or not an operation is
appropriate, and outline the major approaches for dealing with inappropriate operations. The
remainder of this chapter deals with the most important of those approaches, static typing. In
section 4.2 we consider type checking, a simple design for static typing in which the programmer
must supply key type information for the type analyzer. In section 4.3 we show how type analysis
can be used to enforce abstraction boundaries of the sort considered in section 2.1. Last, in section
4.4 we explore type inference, a strategy in which the analyzer deduces the type of each variable
on the basis of its use in the program.

4.1 Typed Languages

Typed languages typically approach the problem of type analysis as follows:

1. They define a set of types for the language, and we define what it means for an expressed value
v to be of typet.

2. An analysis step is introduced into the language-processing model (figure 3.1). The analyzer
assigns atype to each expression in the program. Usually, the goal isto do thisin such away that
if expression eisassigned



typet, then whenever e is executed, its value will be of typet. If the type system has this property,
we say that it is sound.

3. Asit works, the analyzer inspects each invocation of an operation in the program. Each operand
of the operation is an expression of some type, and therefore we know that the value of that
operand will be of that type. If the arguments are not known to be of the appropriate types, we say
that thisinvocation of an operation is a potential type error. The specification of the kinds of
errors which are to be detected in thisway is part of the design of the language.

4. If type errors are detected, the analyzer can take some action, which istypically aso part of the
language design. It can refuse to execute the program, or it can apply some corrective measures.

Each of these steps allows a variety of design choices. Thefirst issue iswhat the types are,
whether a value can have more than one type, and if so whether that type can be determined
readily at run time. In some languages, every run-time value includes a tag (or some other run-
time information) to indicate itstype. Thisis called latent or dynamic typing. Schemeis alatently-
typed language: every value in Scheme has atag to indicate its type. These tags are checked by
nunber ?, string?, etc. Similarly, in our earlier languages we arranged our data
representations to distinguish procedures from other values, and we had a run-time check to
prevent appl y- procval from trying to apply avalue that was not a procedure.

In alanguage with dynamic typing, one can tell at run time when an operation is appropriate or
inappropriate: simply check the tags. One shortcoming of dynamic typing is that inserting and
checking the tags can add run-time overhead. Clever design of data structures can minimize this
overhead.

A more serious limitation of dynamic typing isthat it does not support data abstraction. For
example, it might seem appropriate to take the cdr of alist, but it would be inappropriate to do so
if that list happened to be a bignum representation of a number (section 2.1), and we were not
inside the implementation of the number data type. We study thisissue in section 4.3.

In other languages, a run-time value might represent (say) both an integer and character. Such
languages are said to have an untyped execution model. Data abstraction, as exemplified by an
example of alist that is aso abignum, is one way in which such overlaps might arise.

We could have implemented the language of section 3.5 in an untyped execution model. We could
have represented procedures by integers that point-



(define-datatype closure-record closure-record? (a-closure-

record (ids (list-

of synbol ?)) (body expression?) (env environnent?)))

(define procval ? integer?)(define all-closures (make-vector 1000)) (vector-
set! all-closures 0 1)

(define closure (lanmbda (ids body env) (let ((free-ptr (vector-ref all-
closures 0))) (vector-set! all-closures free-ptr (a-cl osure-
record ids body env)) (vector-set! all-closures 0 (+ 1 free-

ptr)) free-ptr))) (define apply-

procval (lanmbda (proc args) (cases closure-record (vector-ref all-

cl osures proc) (a-closure-record (ids body env) o))

Figure 4.1 Implementing procedures in an untyped execution model

ed into an array of closures. Seefigure4.1. Hereal | - cl osur es isavector of closure records,
with itsfirst element acting as a free-cell counter. In this representation, given a piece of data,
thereisno reliable way of determining whether it was intended to represent an integer or a
procedure.

L anguages with untyped execution models typically make no attempt to detect inappropriate
operations at run time. |f operations are applied to inappropriate data, the results are unspecified.
In such alanguage one might be able to multiply 2 characters; the result is whatever the hardware
happens to do with the representation of characters. We call this a laissez-faire design.

Typed languages avoid these difficulties by analyzing the program before execution, to determine
whether any particular call sitein the program might result in an inappropriate operation at run
time. Thisis caled static type



checking. If apotential type error is detected, the analyzer may produce a warning, insert run-time
checking code (if the run-time model permitsit), or reject the program. Static type checking may
be used either with or without latent typing, but it is critical for languages with an untyped
execution model, since run-time type checking isinfeasible for such languages.

In this chapter we study static type checking. We present several algorithms for assigning typesto
expressions and checking that no expression can possibly cause an operation to be performed on
inappropriate arguments. Our checkers either produce atype for the program or reject it and raise
an error.

The types of our first language have a very simple structure:

{type-oxp) = int

int-type-exp ()

(type-exp) ::= bool
bool-tyvpe-axp (]

(ype-exp) o= ({{type-exp)} '™ -= (type-exp))

proc-type-axp larg-texps result-texn)

When types appear in programs, they are called type expressions. For the remainder of this
section, we ignore the difference between type expressions and types; we consider the distinction
in more detail in section 4.2.

Our types include base types for integers and booleans and types for procedures. The type of a
procedure consists of the types of its arguments (separated by *'s) and the type of itsresult. The
property of an expressed value v being of typet is defined by induction on t:

Definition 4.1.1 An expressed valueis of typei nt iff itisan integer; itisof typebool iffitisa
boolean; anditisof type(t1* ... * tn->1) iff it isa ProcVal that expects exactly n arguments, and
when given n arguments of typesty, . . ., tn, it returns a value of typet.

Thus, in our language, each expressed value has at most one type, but it is not aways possible to
determine the type of avalue at run time, because one may not be able to determine the type of the
value returned by a procedure.



We could use these types to describe Scheme values. For example:

(int -> bool) type of even?

(int * int ->1int) type of +

(int -> (int ->1int)) typeof(lanbda (x) (1 anbda
(y) (+xy)))

((int ->1int) * int - typeof(lanbda (f x) (even?

> bool) (f (+x1))))

where we mean these to be the types of the values of these expressions, not of the expressions
themselves; we haven't said what it means for an expression to have atype.

Our languages will be strongly statically typed, meaning that no program that passes the checker
will ever make atype error. For our languages, atype error is defined as one of the following:

1. an attempt to apply an integer or a boolean to an argument,

2. an attempt to apply a procedure or primitive to the wrong number of arguments,
3. an attempt to apply a primitive expecting an integer to a non-integer, or

4. an attempt to use a non-boolean as the test in a conditional expression.

We do not include other kinds of errors, such as division by zero, as type errors because our
techniques do not allow us to ensure the absence of such errors prior to run time.

Our goal isto write aproceduret ype- of - expr essi on which, given an expression exp and a
type environment (call it tenv) mapping each variable to atype, assigns to exp atypet with the
property that:

Whenever exp is executed in an environment in which each variable has the type specified for it
by tenv, the resulting value has typett.

We will write several versionsof t ype- of - expr essi on. Our analyses will be based on the
principle that if we know the types of the value of each of the variables in an expression, we can
deduce the type of the value of the expression. We will then assign that type as the type of the
expression.

It is easy to write down how t ype- of - expr essi on should behave for the most common
expressions. If the expression is a number, then theresult is



always an integer, and if the expression is avariable, then the result is of the type specified by tenv:

(type-of-expression «n» Nyl = int
{type-cof -expression «id» lenv) = (apply-env feny id)

When the expression is an application we can predict the type of the result by looking at the type
of the operator and types of the operands. For the application to succeed, the type of the operator
must be a procedure type. If the type of the operator is(t1 * t2* ... * tn -> 1), then there must be
exactly n operands, and the type of the i-th operand must beti for each i, so that the procedureis
given arguments of the right type. If these conditions hold, then the result of the application will
be the result type of the procedure, namely t. We can summarize this by writing

if (type-of-expression wralors fenv) = (b # b ® ... % by == 1)
and {type-of -expression «rand» tenv) =4
and {cype-of-expression «rands» ten) = b

and (t vpe-of -expression wkind, » leny = fo

then (type-of-expression « (ralor rand, rand; ... rand, ) » leny) =1

Thisis an example of a conditional specification. It saysthat if all the hypotheses (listed above the
line) are true, then the conclusion (shown below the line) must also be true. We often omit the "if,"
"and" sand "then," since they are implicit in the format of the rule. We call thisthe typing rule for
application. Such rules are a standard way of specifying the typing behavior of alanguage.

As another example of thiskind of reasoning, let us consider the typing rule for conditional
expressions. In the languages of chapter 3, the test expression of a conditional expression can
return any value. Here, since we have atype of booleans available, we restrict conditional
expressions so that the test expression must return a boolean. Thisleads us to the following rule:

(type-of -expressicn «lest-exp» tenv) = bool
(Lype-of -expression «lrne-expe tenvl =1
(type-of -expression «false-exps teny) =t
(type-of-expressicon
«if fesf-exp then lrue-exp else folse-exps
tenv) = |




For a conditional expression to be well-typed, the test must have type bool , and the two branches
must have the same type t. The value of the conditional expression will be the value of one of its
branches, so no matter what the value of the test, the value of the entire expression will have typet.

We next turn to finding the type of a procedure expression. Consider the procedure expression
proc (x, ..., Xn) exp. To say that this procedure expression hastype (t1 * t2* ... * tn->t) isto
say that it expects n arguments, of typests, . . ., tn, and given such argumentsiit will return avalue
of typet.

To check that this procedure actually has this behavior, we must show that if the body is executed
with the variables x, . . ., xn having values of typesty, . . ., tn, then it will produce a value of typet.
Of course, the body exp may have other variables, but those will have the values (and hence the
types) that they had at closure-construction time.

This suggests the following rule, where we use the same notation about environment extension
that we used in section 3.5; we write [x = t1,y = t2]tenv in place of (ext end-t env '(xy) '(t1 t2)
tenv).

(type-of -expression «exps [xy =8, ..., xy = I |lenv) =

(Lype-of -expression «proc (X, ..., Xy) €Xp» leno)
=(fyxefa%... 2, -=[)]

This example reveals afundamental problem with this approach: if we are trying to compute the
type of apr oc expression, how are we going to find the typesti, . . ., tn of the bound variables?
They are nowhere to be found.

There are two basic strategies for rectifying this situation.

» type checking: In this approach the programmer is required to supply the missing information
about the types of bound variables, and the type checker deduces the types of the other expressions
and checks them for consistency.

* type inference: In this approach the type checker attempts to infer the types for the bound
variables based on how the variables are used in the program. If the language is carefully
designed, the type checker can infer all or most of the types of the bound variables.

We study type checking in sections 4.2 and 4.3, and type inference in section 4.4. Type checking
is the approach taken in most commonly used programming languages, but type inference
illustrates some important ideas.



(expression) = proc  ({{type-exp) {identifier)}*!+?) (expression)
proc-exp (arg-texps ids body)

lexpression) n= letres
{{type-exp) lidentifier)
({{type-exp} (identifier}}**') = (expression)}*
in (EXpression)
latrec-exp
[result-texps prcc-names
arg-texpss idss bodies
letrec-body)

\expression) = true
true-exp ()

lexpression) = false
'fa.lsc-—-exp ()]

Figure 4.2 Grammar for expressions with types

Exercise4.1[*] Find at least two languages in which it is possible to multiply two characters. What, if
anything, can be deduced about representation of characters by analyzing the output?

4.2 Type Checking.

In atype-checked language, we require the programmer to include the types of all bound
variables. For | et r ec-bound variables, we require the programmer to specify the result type of
the procedure as well; we see later why thisis needed. We modify our grammar to embody these
requirementsin figure 4.2.

Here we have changed the productions for pr oc- exp and | et r ec- exp. We have also added
productionsfort r ue- exp and f al se- exp, which are of boolean type. With this syntax,
typical programslook like



proc (int x) addil(x)
and

letrec int fact (int x) = if zero?(x) then 1 else *(x, (fact subl
(x)))in fact

A procedure expression looks like

proc (f Xi.de Xo,.0 0 0 Xal £XP

wherets, . . ., th are type expressions. The result type of f act isi nt, but thetype of f act itself
is(int ->int).

Type expressions are syntactic in nature; we introduce types as the corresponding analysis-time
semantic notion, as we use closures as the run-time semantic notion corresponding to procedure
expressions. For the language of this section, we take types to be the same as type expressions;
types are given more structure in sections 4.3 and 4.4.

A typeis either an atomic type with aname or a procedure type with alist of argument types and a
result type. Using named atomic types enables us to add new atomic types later. The procedure
expand-t ype- expr essi on converts type expressions to types in the obvious way. Our
checker callsexpand-t ype- expr essi on whenever we convert from something syntactic
(that is, something from the abstract syntax tree) to something we want to analyze. The constants

i nt-type andbool -t ype are convenient abbreviations. See figure 4.3.

We have enough toolsto writet ype- of - expr essi on. Seefigure 4.5. Thefirst few clauses
implement the rules for literals and variables. We use a procedure appl y-t env similar to

appl y- env but with adistinctive error message. The clause for i f - exp implements the rule for
conditional expressions. It calls the procedure check- equal -t ype! , which succeedsif itsfirst
two arguments are equal types and otherwise raises an error. The third argument to check-

equal -t ype! isused for error reporting. We use the proceduret ype-t o- ext ernal -form
to convert atype back into alist structure like

(int * (int -> bool) ->int)
for better readability (figure 4.4).

Exercise 4.2 [*] The Scheme procedure equal ? is more powerful than needed here. Rewritecheck -
equal - t ype! todo an explicit recursive traversal of the types.



(define-datatype type type? (atomic-type (name synbol ?)) (proc-
type (arg-types (list-of type?)) (result-type type?)))(define int-
type (atomic-type "int))(define bool-type (atomn c-type 'bool))

(define expand-type-expression (lanbda (texp) (cases type-

exp texp (int-type-exp () int-type) (bool -type-exp () bool -
type) (proc-type-exp (arg-texps result-texp) (proc-

type (expand-t ype- expressi ons arg-texps) (expand-type-
expression result_texp)))))) (defi ne expand-type-

expressions (lanbda (texps) (map expand-type-expression texps)))

Figure 4.3 Representation of types

We can now write auxiliary procedures to implement each of the other rules. The rule for
procedure expressions in our language is given by

(type-of-expression «oxps [¥y =, ..., x, = foJteno) =1

{type-of-expression «proc (f Xy, ---,'t,. Xy ) EXp o LeRy)
=l xdr ., %l -=1)

This differs from our previous attempt at arule for procedures only by the specification of the
types of the formal parameters in the conclusion.

Thisruleisimplemented by t ype- of - pr oc- exp. Given apr oc expression pr oc (t1 xi, t2
X2, ..., thxn) exp, t ype- of - pr oc- exp first converts the type expressionsts, . . . tninto the list
of typesar g- t ypes. It then checks the body in the specified type environment and binds the
resulting typetor esul t -t ype. Last, it constructs a procedure type out of the appropriate parts
(figure 4.6), following the specification of the typing rule.



(define check-equal -

type! (lanbda (t1 t2 exp) (or (equal? tl t2) (eopl:error 'check-
equal -type! "Types didn't match: ~s !'= ~s i n~%s" (type-
to-external -formtl) (type-to-external -formt?2) exp))))
(define type-to-external-form (lanbda (ty) (cases type ty (at oni c-
type (nanme) nane) (proc-type (arg-types result-

type) (append (arg-types-to-external -form arg-

types) "(->) (list (type-

to-external -formresult-type)))))))

Figure 4.4 Checking for equal types

We next turn to application. Given either a primitive application or a procedure application,
t ype- of - expr essi on finds the types of the operator and the operands and then callst ype-
of - appl i cati on to apply therule

(cype-of-expression «rmlors fenvh = (b #lz % ... % [ == 1)
(type-of-expression arimndys tent) =k
(cype-of-expression «ratds» tenw) = b

icype-cf-expression wratid,» lenwv) = I,
(cype-of-expression « (rator rand, randy ... rand,)» tenv) = §

The definition of t ype- of - appl i cat i on isshown infigure 4.6. This procedure first checks
to see that the type of the operator is a procedure type. Then it checksto see that the number of
arguments expected by the procedure matches the number of arguments supplied. Then, in the

f or - each loop, it checksto see that the type of each expected argument is equal to the type of
the corresponding operand. It does this by passing each triple of (rand-type, argument-type, rand)
tocheck- equal -t ype! . If these checks succeed, then the type of the application is the result
type of the procedure.



(define type-of-

expression (lanbda (exp tenv) (cases expression exp (lrit-

exp (nunber) int-type) (true-exp () bool-type) (fal se-

exp () bool -type) (var-exp (id) (apply-tenv tenv id)) (if-

exp (test-exp true-exp fal se-exp) (let ((test-type (type-of-
expression test-exp tenv)) (fal se-type (type-of-

expression fal se-exp tenv)) (true-type (type-of-

expression true-exp tenv))) (check-equal -type! test-type bool -
type test-exp) (check-equal -type! true-type false-

type exp) true-type)) (proc-

exp (texps ids body) (type-of -proc-

exp texps ids body tenv)) (primapp-exp (primrands) (type-of -
application (type-of-primtive prim (types- of -
expressions rands tenv) pri mrands exp)) (app-

exp (rator rands) (type-of -application (type-of -
expression rator tenv) (types-of -

expressi ons rands tenv) rator rands exp)) (let-

exp (ids rands body) (type-of-let-

exp ids rands body tenv)) (letrec-exp (result-texps proc-

nanes texpss idss bodies | et rec-body) (type- of -
| etrec-exp result-texps proc-

nanes texpss idss bodies | etrec-body tenv)) ))) (define types-
of -expressions (lambda (rands tenv) (map (I anbda (exp) (type-of-

expression exp tenv)) rands)))

Figure4.5t ype- of - expr essi on for atype checker




(define type-of-proc-exp (lanbda (texps ids body tenv) (let ((arg-

types (expand-type-expressions texps))) (let ((result-

type (type-of - expressi on body (extend-tenv ids arg-
types tenv)))) (proc-type arg-types result-type))))) (define type-of-
application (lanbda (rator-type rand-

types rator rands exp) (cases type rator-type (proc-type (arg-

types result-type) (if (= (length arg-types) (length rand-

types)) (begin (for-each check- equal -

t ype! rand-types arg-types rands) result-

type) (eopl :error 'type-of-expression (string-

append "Wong nunber of argunents in expression ~s:" "~
%expected ~s~%got ~s") exp (map type-to-external -form arg-
types) (map type-to-external -formrand-

types)))) (el se (eopl:error 'type-of-

expr essi on "Rator not a proc type: ~%s~%

had rator type ~s" rator (type-to-external-formrator-type))))))
(define type-of-primtive (lanbda (prim (cases primtive prim (add-
prim () (proc-type (list int-type int-type) int-type)) (incr-

prim () (proc-type (list int-type) int-type)) (zero-test-

prim () (proc-type (list int-type) bool-type)) o))

Figure 4.6 Checking procedures, application, and primitives




(define type-of-let-exp (lanbda (ids rands body tenv) (let ((tenv-for-
rands (extend-tenv i ds (types-of -
expressions rands tenv) tenv))) (type- of -

expression body tenv-for-rands))))

Figure 4.7 Checking | et

To deal with primitive applications, weneedt ype- of - pri m ti ve, which takes aprimitive
and returnsitstype (figure 4.6).

Exercise 4.3 [*] The specification of thetypesint ype- of - pri m ti ve islessreadable than one
might like. Modify t ype- of - pri m ti ve sothat the types of primitives are specified using list
sructureslike (1 nt * (int -> bool) -> int).Includealist-structure parser to convert a
list structure like the one above.

What about | et and| et rec? Typing| et iseasy. We can compute the types of each of the
right-hand sides, and use those types in the type environment for the body. The typing ruleis:

(type-of-expression «&» lene) =1
(type-of-expression «g» fenv) = b

(type-of-expression «g,» leND) =1,
(type-of-expreasion whpdhys [.'I.'] =H,..., 1y = f’,,]h’!m] =

(type-of-expression «let X) =€ ... Xy = &y in body» fenv) =1

The codefor thisisin figure4.7. Thel et r ec expression isalittle more chalenging. A typical
| et r ec expression lookslike

letrec
Bopr (b e by X1 ) = 0
by P2 (B2 X1 ooop bop, Xap, ) = B2

in boidy



This expression declares a set of procedures named p1, p2,..., with bodies e, e, . ... The
procedure pi has ni parameters; its j-th formal parameter is named xij and has type tij; and its result
typeisti. Hence the type of pi should be (ti1 * ti2* ... * tini -> ti).

The body of thel et r ec and each of the procedure bodies e1, e2,. . . must be checked in atype
environment where each variable is given its correct type. We can use our scoping rulesto
determine what variables are in scope, and hence what types should be associated with them.

In the body of the | et r ec, the procedure names p1, p2,. . . are in scope. As suggested above, the
procedure pi is declared to have type (ti1 * ti2 . . . ->ti). Hence the body should be checked in the
type environment

f!’HIETEU_!V = [F': =ty vt ... == K1,
Pr=Un *ln... ==z},
Jtene

We have to check each of the right-hand sides. But in what type environment? In the i-th
procedure body &, the variables p1, pz, . . . are in scope, and they should have the same types they
have in tenvoody. IN addition, the formal parameters xi1, xi2, . . . are in scope, and they should have
typestis, tiz,. . . .Hence the type environment for e should be

feny; = |..'I.'J| =th, Xp =ta, ... ]r'f’”f',!“;,;,

Furthermore, in this type environment, e should have result typeti. This leads us to the following
rulefor | etrec:

(type-of -expression «eps ENty) = §

{type-of -expression arye feni,) = |
(type-of -expression «bodys tenty,, ) = |
(type-of-expression
« letrec
Bopy b Xpng e By X1y ) = B
by pa Uk X2, ooy ba, Ko, ) = 02
in body »
tenv) =

We must include the result types ti in the program. We cannot just compute the type of each e, as
wedid for | et , because we need all of thetj'sto compute the type of each &.



(define type-of-letrec-exp (lanmbda (result-texps proc-

nanes texpss idss bodies | etrec-body tenv) (let ((arg-
typess (map (lambda (texps) (expand-
type- expressi ons texps)) t expss)) (result-

types (expand-type-expressions result-texps))) (let ((the-
proc-types (map proc-type arg-typess result-

types))) (let ((tenv-for-body (extend-tenv proc-
nanes the-proc-types tenv))) (for-

each (lambda (ids arg-types body result-

type) (check-equal -t ype! (type-of -

expression body (extend-tenv ids arg-
types tenv-for-body)) result-

type body)) i dss arg-typess bodies result-
types) (type-of -expression |letrec-body tenv-for-body))))))

Figure 4.8 Checking|l et r ec

Thecodefort ype- of - | et r ec- exp isshown in figure 4.8. The type expressions for the
arguments and for the result are first converted to types. The variablet he- pr oc-t ypes isthen
bound to the list of types of the procedures, and tenvhody is computed and isboundto t env- f or -
body. Then the type of each procedure body is computed and is compared to the specified result
type. If al of these tests are passed, then the type of thel et r ec body is computed and is returned
as the type of the entire expression.

The top level of the checker ist ype- check, which is defined as

(define type-check (lanbda (string) (type-to-external -form (type-
of - program (scan&parse string)))))



Exercise 4.4 [ * *] Complete the implementation of the checker, and test it on expressions that exercise al
aspects of the checker. These tests should, of course, include programs that are rejected by the checker.

Exercise 4.5 [ * * *] Construct atest harness that takes a set of expressions, along with their correct types (or
#f for expressions that should report atype error), runs the checker on each, and verifies that the checker
returns the correct type for each expression that should be typed and that it reports an error for each expression
that should be rejected. Hint: this will require using more of the Scheme language than we have used for our
interpreters.

Exercise 4.6 [ *] Extend the checker to handlevar assi gn- exp from section 3.7.

Exercise 4.7 [* *] Add pai I typesto the language. Say that avalueisof type (pai r tit2) if itisapair
consisting of avalue of type t1 and avalue of type to. Add to the language the following productions:

(lype-exp) == pair {lype-exp) {lype-exp)
pair-type (texpl texp2) |

(expression} == pair ({expression) , (expressiony)
pair-exp (expl expZ)

{expression) »= unpack {identifier) {(identifier) = {expression}
in {expression)
:ugp_at.:}-:.—exp (idl id2z exp body)

A pai r expression createsapair; an unpack expression (like exercise 3.18) bindsits two
identifiersto the two parts of the expression; the scope of these identifiersisthe body. Thetyping
rulesfor pai r and unpack are:

(type-of -expression «&» kN =4
(type-of-expression af» BHI) = 1§

(type-of-expression apalr (g ) » tenw) = i-[;:-;il: NEL

(type=-of-expression «expe fene) = (pair by ;)
(type-of-expression body[x; = §y, 22 = B lenv) =1
{type-of-expression «unpack ¥, ¥ = 2ypin fm.:‘l'l.rn fernrzr) = |

Extend t ype- of - expr essi on to implement these rules.



Exercise4.8[**] Add| | St typesto the language, with operations like those of exercise 3.7. A valueis of

type(l i St t)if andonly if itisalist and al of its elements are of typet. Extend the language with the
following productions:

(type-exp) = list (type-exp)
[List-type-exp (texp)

{expression) = lict ({{expression}}''+!)
i'l ist-exp (exps)
(expression) 1= cons  ({expression} , (expression})
(cons-exp (expl exp2)
{expression) = null? [{expression))
-_nul l-exp f;e.?:p_l_]
{expression) 1= emptylist [ (type-exp} ]

emptylisc-exp (texp)

with types given by the following four rules:

(type-of-expression wepe tene) =1

(type-of-expression we»lenv) =§, n >0
{type-of-expression «list(e,... u)» tene) = (List )

(type-of-expression «o» leny) =!
~ {type-of-expression «o» keny) = (list i)
(tvpe-of -expresoion scong (o0 » fene) = [1ist #)

(type-of-expreassion «d» lenr) = (list )
(type-of-expression «null? (e)» fenv) =bool

[type-of-expression «emptylist[i]e fenv) = (list i)

Write similar rulesfor car and cdr , and extend the checker to handle these as well as the other
expressions. These rules should guarantee that car and cdr are applied to lists, but they should
not guarantee that the lists be non-empty. Why would it be unreasonable for the rules to guarantee
that the lists be non-empty? Why is the type parameter inenpt yl i st necessary?



4.3 Enforcing Abstraction Boundaries

The presence of data abstraction in alanguage makes the definition of "inappropriate" more
difficult. We can probably agree that in Scheme (3 x) and (car 3) areinappropriate, but what
about (- #\a #\b) or (- #\a 1) ?If aparticular implementation of the character interface
used integers as a representation, then these might be appropriate inside the implementation of the
data type of characters, but they would likely be inappropriate outside the implementation, since
the client code is not supposed to know, or be able to take advantage of, the representation of the
data. And even (car 3) might be appropriate inside the implementation of numbers, if the
implementation used a unary or a bignum representation.

Wed like to add to our language a facility for building and enforcing abstraction boundaries. Our
language will use typesto ensure that client code does not manipulate the values of the data type
except through the procedures in the interface of the type.

We establish an abstraction boundary with al et t ype expression, which looks like

leccype Hd = 1
b 4 (b X1 eees E']..lr-_ -1':1.IJ1] = £
f-_:_- Pa fz] Nplp vory le_.l.! IE:”:] = B
in body

This defines a new type named tid, represented by the type t. The names p1, pz2,. . . make up the
interface. The bodies e1, e2,. . . of these procedures constitute the implementation, and body is the
client or user of the type. The ideaisthat the definitions of pa1, pz,. . . know that avalue of typetid
isreally implemented as a value of typet, but body will seetid as a new atomic type, manipulable
only by the procedures named pz, p2,. . . .

For example, figure 4.9 (top) isadefinition of atype nyi nt that implements the interface like
that of the nonnegative integers from section 2.1. It uses the built-in integers of our language,
except that zero is represented by 1. In the implementations of the procedures, nyi nt isthe same
asi nt,sowecaninvokeaddl or subl onavaueof typenyi nt . In body, however, nyi nt is
anew datatype, on which we can use only the operations zer o (a 0-ary procedure that returns a
representation of 0), succ, pred,andi szero?.Sointhebody (succ (zero)) islegd,
butaddl ((zero)) isnot,noriszero? ((zero)).



For another example, consider a data type like the type of environments. Since we do not have
symbolsin our language, we consider instead the data type of finite functions from integersto
integersin figure 4.9 (middle). The interface consists of thenameszer o-ff, extend-ff,and
appl y-ff.Theprocedurezer o- f f takes no arguments and returns the function that always
returns 0. The procedure ext end- f f changes the value of the function for asingle integer. The
functionsbuilt by zer o- f f and ext end- f f arefinitein that they return non-zero answers for
only finitely many arguments. The procedure appl y- f f applies afinite function to an argument.

We cannot write the code in figure 4.9 (bottom), however. The procedure application (f k) in
appl y- f f isacceptable, since inside the implementation we know that finite functions are
represented as procedures. Indeed, inside ext end- f f we could have written (ol d-ff k1) in
placeof (appl y-ff ol d-ff k1) .Butsuchan application isnot acceptable in the body, since
that would mean that the body relies on this representation.

Our ideafor implementing thisis to use type identifiersin our type expressions, and to put
bindings for the type identifiersin our type environments. In the preceding examples, nyi nt (or
ff)isatypeidentifier. We check the implementation in atype environment where nyi nt (or

f ) isbound to its representation type, but we check the client code in atype environment in
which nyi nt (or f f) isbound to a new atomic type.

To implement thisidea, we add to the grammar two new productions:

(expression) := lertype (identifier) = (type-exp)
{{type-cxp) {identifier)
({{type-exp) (identifier)}"""'} = {expression}}"
ir {Eiprﬁﬁ-siﬂﬁ}
lettypa-axp
{bvpe-name bexp result-texps proc-names
arg-texpss idss bodies
lectype-hody)

(type-exp) o= (identifier)
: tid-type-exp (id) |

Thefirst of these isthe production for | et t ype. The second production introduces type
identifiers into the language of type expressions.

Atruntime, al et t ype expression will act likeal et r ec expression. The scope of the declared
procedures consists of the procedure bodies and the body of thel et t ype.



lettype nyint = int nyint zero () =1 nyint succ (nyint x) = addl
(x) nyint pred (nyint x) = subl

(x) bool iszero? (nyint x) = zero? (subl(x))in

bodyl ettype ff = (int ->int) ff zero-

ff () = proc (int k) O ff extend-ff (int k, int val, ff old-

ff) = proc (int kl) if zero? (- (Kk1,

K)) t hen val el se (apply-ff old-ff k1) int apply-
ff (ff f, int k) = (f k)inlet ffl = (extend-

ff 111 (extend-ff 2 22 (zero-

ff))) in (apply-ff ff1 2)lettype ff = (int ->int) ff zero-
ff () = proc (int k) 0 ff extend-ff (int k, int val, ff old-

ff) = proc (int kl) if zero? (- (Kk1,

K)) t hen val el se (apply-ff old-ff k1) int apply-
ff (ff f, int k) = (f k)inlet ffl = (extend-

ff 111 (extend-ff 2 22 (zero-

f£)))] in (ff1 2)

Figure4.9| et t ype expressions

We add to our type environments a new kind of binding, so that the type environment binds
ordinary identifiersto types and type identifiers to types. The latter get added one at atime, so we
create anew kind of rib:



(define apply-tenv (lanmbda (tenv syn) (cases type-

envi ronnent tenv (empty-tenv-record () (eopl:error 'apply-

tenv "Variabl e ~s unbound in type environment" sym) (ext ended-
tenv-record (syns vals tenv) (let ((pos (list-find-

position symsyns))) (if (nunber? pos) (list-

ref vals pos) (apply-tenv tenv syn)))) (typedef -

record (nane type tenv) (appl y-tenv tenv sym))))

Figure 4.10 Adding anew kind of rib to type environment

idefine-datatype type-environment type-envircnment?
{empty-tenv-record]
{extended-tenv-record
{syms (list-of symbol?))
{vals {(list-of Cype?))
(tenv type-environment?))
(Lypedef -record
(name symbol?)
(definition type?)
[Ceny bype-environment?)))

[define empty-tenv empty-Cenv-record)
[define extend-tenv extended-tenv-record)
[define extend-tenv-with-typedef typedef-record)

Having a new kind of rib means that we can use the same name both for atype identifier and an
ordinary identifier (figure 4.10).

Exercise 4.9 [*] The error behavior of appl y- t env can beimproved by including the original type
environment in the error message. Rewriteappl y- t env to dothis.

The definition of typesis unchanged from section 4.2, but we modify expand-t ype-
expr essi on to take atype environment and expand the bindings of any typeidentifiersit sees
(hence the name expand). See figure 4.11.



(define expand-type-expression (lanbda (texp tenv) (cases type-

exp texp (tid-type-exp (id) (find-typedef tenv id)) (int-type-
exp () (atomic-type 'int)) (bool -type-exp () (atomc-

type 'bool)) (proc-type-exp (arg-texps result-texp) (proc-

type (expand-type- expressi ons arg-texps tenv) (expand-type-

expression result-texp tenv)))))) (define expand-type-

expressions (|l anmbda (texps tenv) (map (lambda (texp) (expand-

type-expressi on texp tenv)) texps)))

Figure 4.11 Expanding type expressions

Every use of expand-t ype- expr essi on isnow modified to take the type environment as a
parameter. For example, we write:

(define type-of-proc-exp (lanbda (texps ids body tenv) (let ((arg-

types (expand-type-expressions texps tenv))) (let ((result-
type (type- of - expressi on body (ext end-
tenv ids arg-types tenv)))) (proc-type arg-types result-type)))))

The proceduret ype- of - | et t ype- exp worksliket ype- of - | et r ec- exp, except that

when it checks the procedure declarations, it does so in an environment where the type identifier is

bound to its representation, and when it checks the body, it does so in an environment where the
type identifier is bound to a new atomic type.



Recall that atypical | et t ype expression lookslike

leccype fid =t
#I PI I'tl.l 't1|..l""lr'r1_lp|| 'tl-uill:l = l’l
:2 Pz [tﬂ IE'-' sy t:..u: -t':'_l.-|_-. | = &2

in body

To check this expression, we build two type environments. The type environment tenvimplementation
isused as abasis for checking the procedure bodies e that form the implementation of the data
type. The type environment tenveient is used for checking body, which forms the client or user of
the data type.

”—"I'!E"r'lrlr'!!:'.lrh'lrhr!h'lr: = [tid = t]tenv
FEHTD ot = [tid = {fresh atomic type) Jtenw

We must also bind each ordinary identifier to its type according to the usual scoping rules. To do
this, we proceed by analogy with | et r ec. Aswith| et r ec, the procedure body is checked in an
environment in which the procedure's formal parameters and all thel et r ec-bound procedure
names are bound to their declared types. Furthermore, the type expressions should be expanded
using tenvimplementation, because the procedure body e is inside the abstraction boundary, and so the
representation of the type tid ast should be visible. Hence the type environment for e should be

fenp; =
[.'l'ﬂ = t:’l" Ap = t;l-" aaa ]
[pr=tnetiz... =->H)%
pPr=lly #ln ... # -2 H1)°,
]fﬂ“'implmrum&*u

where t* means the expansion of the type expression t in tenvimplementation.

Similarly, the type environment for the body of thel et t ype should be

.rwrrr,!my =
[p1 =t *hz .. -2 107,
pr=(hy # b, ==,
[ten i

where t+ denotes the expansion of the type expression t in tenveient. Thisis the correct expansion,
because the body is outside the abstraction boundary,



and therefore should seetid as an atomic type, on which the only available operations are the pi.

Every time we extend a type environment, we do so with atype expression that is expanded in the same type
environment. Therefore we define the auxiliary procedures

(define extend-tenv-with-typedef-exp (lanbda (typenane texp tenv) (extend-tenv-
wi t h-typedef typenane (expand-type-expressi on texp tenv) tenv)))

(define extend-tenv-with-type-exps (lanbda (ids texps tenv) (ext end-

tenv ids (expand-type- expressi ons texps tenv) tenv)))

The code is shown in figure 4.12. We proceed much aswe did for t ype- of - | et r ec- exp. The procedure
first extracts the various portions of the | et t ype. Thevariabler hs-t exps isbound to thelist of type
expressions associated with the procedures. We must use type expressions here, rather than types, because these
type expressions will be expanded differently in the procedure bodies than in the body of thel et t ype.

Thetype environmentst env-f or-i npl enentati on, tenv-for-client, tenv-for-proc,and
t env-f or - body arethen built. Int env-f or - cl i ent, the type name is bound to a fresh atomic type. This
code usesf r esh-t ype, which creates a new type with aname similar to its argument:

(define fresh-

type (let ((counter 0)) (lambda (s) (set! counter (+ counter 1)) (at om c-
type (string->synbol (string-append (synbol -
>string s) (nunber->string counter)))))))

Successive evaluations of (fresh-type ' xx) will return (at om c-type xx1), (atom c-type
XX2) , etc.

Once the various type environments are constructed, the type of each of the procedure bodies is computed and
compared to the specified result type,



(define type-of-lettype-exp (lanbda (type-nane texp result-

texps proc-nanes arg-texpss idss bodies | ettype-

body tenv) (let ((the-newtype (fresh-type type-nane)) (rhs-

t exps (map proc-type-exp arg-texpss result-

texps))) (let ((tenv-for-inplenentation (extend-tenv-

wi t h-t ypedef - exp type-nane texp tenv)) (tenv-for-
client (extend-tenv-with-typedef t ype- nane t he-
newtype tenv))) (let ((tenv-for-proc (extend-tenv-
Wit h-type-exps proc- nanes rhs-texps tenv-
for-inplenentation)) (tenv-for-body (ext end-
tenv-w t h-type- exps proc- names rhs-texps tenv-for-
client))) (for-each (lambda (ids arg-texps body result-
t exp) (check-equal -t ype! (type-of -

expressi on body (extend-tenv-with-type-
exps ids arg-texps tenv-for-

proc)) (expand-type- expression result-

texp tenv-for-proc) body)) i dss arg-

t expss bodi es result-texps) (type-of -

expression |lettype-body tenv-for-body))))))

Figure4.12t ype- of - | et t ype- exp




lettype nyint = int nyint zero () =1 nyint succ (nyint x) = addl

(x) nyint pred (nmyint x) subl(x) bool iszero? (myint x) = zero? (-(x, 1))
in (succ (zero))

type: nyint8lettype nmyint =int nmyint zero () =1 nyint succ (nyint x) = addl
(x) nyint pred (nmyint x) = subl(x) bool iszero? (nmyint x) = zero? (-(x, 1))
in addl((zero))types didn't match: int != nyint9 in(app-exp (var-exp zero) ())
lettype ff = (int ->int) ff zero-ff () = proc (int k) 0 ff extend-

ff (int k, int val, ff old-ff) = proc (int k1) if zero? (-

(k1, k)) t hen val el se (apply-ff ol d-
ff k1) int apply-ff (ff f, int k) = (f k)inlet ffl = (extend-ff 1 11 (extend-
ff 2 22 (zero-ff))) in (apply-ff ffl 2)type: intlettype ff = (int -

>int) ff zero-ff () = proc (int k) O ff extend-ff (int k, int val, ff old-
ff)y = proc (int k1) if zero? (-

(k1, k)) t hen val el se (apply-ff ol d-
ff k1) int apply-ff (ff f, int k) = (f k)inlet ffl = (extend-ff 1 11 (extend-
ff 2 22 (zero-ff))) in (ffl 2)rator not a proc type:(var-exp ff1)

had rator type ff117

Figure 4.13 Examples of type checkingusing | et t ype




usingt env- f or - pr oc, which extendst env-f or - i npl enent ati on. If al of these tests
are passed, then the type of thel et t ype body iscomputed int env- f or - body, which extends
tenv-for-client,andisreturned as the type of the entire expression.

The results of this system on the examples from the beginning of the section are shown in figure
4.13. Each attempt to break the abstraction boundary by performing an illegal operation is
detected as atype error.

Exercise 4.10 [ *] Complete the implementation of the checker of this section.

Exercise 4.11 [ * *] How many of the other callsto expand- t env can be replaced with ext end-
tenv-w t h-type- exps?

Exercise 4.12 [ *] Extend the test harness from exercise 4.5 for this checker. Be careful to handle fresh types
correctly; for instance, the first example in figure 4.13 might return myi nt 1 or nyi nt 2 or myi nt 3, etc.

Exercise 4.13 [ * * *] In our examples, the client program (the body of the | et t ype) appears together
with the code that implements the abstract datatype. It ismoretypical for the client code to be separate from
the implementation. Thus a program unit might look like

inporttype ff ff zero-ff () ff extend-
ff (int k, int val, ff old-ff) int apply-ff (ff f, int k)inbody

Modify this checker to check such program units. Devise a complementary syntax for eXpor t t ype to
export atype, and a syntax for combining such program units.

4.4 Type Inference

Writing down the types in the program may be helpful for design and documentation, but it can be
time-consuming. Another approach is to have the compiler figure out the types of al the variables,
based on observing how they are used, and utilizing any hints the programmer might give.
Surprisingly, for our simple languages, the compiler can always infer the types of the variables.
This strategy is called type inference.

To do this, we change the language so that al the type expressions are optional. In place of a
missing type expression, we use the marker ?. Hence atypical program looks like



letrec ? even(? odd, ? x) = if zero? (x) then 1 else (odd subl(x))
in letrec ? odd(? x) = if zero? (x) then 0 else (even odd subl
(x)) in (odd 13)

Each of the five question marks indicates a place where a type must be inferred.

Since the type expressions are optional, we may fill in some of the ?'swith types, asin

letrec ? even(? odd, int x) = if zero? (x) then 1 else (odd subl(x))
in letrec bool odd
(? x) = if zero? (x) then 0 else (even odd subl

(x)) in (odd 13)

Exercise 4.14 [ *] What is wrong with this expression?

letrec ? even(? odd, ? x) = if zero? (x) then 1 else (odd subl(x))
in letrec ? odd
(bool x) = if zero? (x) then 0 else (even odd subl

(x)) in (odd 13)

We add the following productions to our grammar:
{optional-type-exp) == [lype-exp)
a-type-exp (bexp)

{optional-tvpe-exp) = ?
no-type-exp ()



An <optional-type-exp> is either atype expression or a?. To use optional type expressionsin
ordinary expressions, we change the productions for pr oc- exp and| et r ec- exp to use
<optional-type-exp>:

{expression) 1= proc  ({{optional-type-exp} (identifier)}''-') {expression)
proc-gxp (opticonal-arg-texps ids body) .

{cxpression) ii= letrec
{{optional-type-exp} (identifier)
({{optional-type-exp) {identifier)}''} = [expression}}
in (expression}
letrec-exp
(optional-result-texps proc-names
optional -arg-texpss idss bodies
letrec-body)

To deal with the ?'s, we add a new kind of type, called atype variable. A type variable stands for
atype that is not yet known. Each type variable contains a serial number that identifiesit uniquely,
and a container, which is avector of length 1. The vector's single element can be either () ,
meaning that nothing is known about this type: empty, or else atype: full. The checker will fill the
type variable when it deduces something about the type. Once atype variable is full, its contents
will never be changed. Such a variable is sometimes called single-assignment or write-once. The
procedures that deal with typestreat atype variable as a placeholder for the type it contains (if

any).

The procedures for manipulating type variables are shown in figure 4.14. The proceduref r esh-
t var creates afresh type variable, with aglobally unique value for its counter, and with its vector
initialized to () , meaning that nothing is known yet about this type.

Type variables should not be confused with the type identifiers of section 4.3. Type identifiers
have lexical scope and are kept in type environments, but type variables are global and are kept in
Scheme's heap.

We change all callsto the procedure expand- t ype- expr essi on so that they instead call
expand- opti onal -t ype- expr essi on. Thischangeis necessary to match the grammar.
When the procedure expand- opt i onal -t ype- expr essi on encounters atype expression,
it calsexpand-t ype- expressi on; when it encountersa?, it emits atype variable.

We next modify check- equal -t ype! to handletype variables. The new version of check-
equal -t ype! will perform atask that may be described as "check to seeif the two types can be
made equal, and if so, adjust the contents of the type variables to make them equal .”



jdefine-datatype type type?
{atemic-type (name symbol?))
(proc-type
(arg-types ({list-of type?))
(resulc-cype Lype?) )
(tvar-type
(serial -number integer?)
(container wvector?)))

{define expand-optional-type-expression
(lambda (otexp Cenv)
{cases optional-type-exp otexp
mo-type-exp () (fresh-twvar))
(a-type-exp (texp) (expand-type-exprassion texp tenwv)))))

{define fresh-tvar
(let ((serial-number 0))
{lambda ()
(aet! gerial -number [+ 1 serial -number) ]
(tvar-type serial-number (vector “()}})}})

{define tvar-->contents
(lambda (ty)
{vector-ref (tvar-type->container ty) 01))

{define tvar-set-contents!
(lambda {(ty wal)
{(vector-set! (tvar-type-szcontainer ty) 0 wval)l}

(define tvar-non-empby?
{lambda (Cy)
{not {(null? {vector-ref (tvar-type-=container ty} 0)1}1})

(define tvar-type-container
{lambda (ty)
(cases Lype ty
{tvar-type {(sn wvec) wvec)
{else (eopl:error ‘tvar-type-scontainer
"Nok a twvar-type: -s" tylll))

Figure 4.14 Definition of types and type variables




With the new behavior for check- equal -t ype!, type-of - expressi on recursively
walks through the program. As it walks through the program, it callscheck- equal -t ype! to
take careful note of how each symbol is used and to make whatever deductions are possible about
the types.

This equality-centered approach can be used to ssmplify the code for t ype- of - appl i cati on:

(define type-of-application (lanbda (rator-type actual -

types rator rands exp) (let ((result-type (fresh-tvar))) (check-
equal -type! rator-type (proc-type actual -types result-
type) exp) result-type)))

Thisversion makes atype variabler esul t - t ype for the as-yet-unknown type of the entire
application. It then checks to see that the operator is a procedure that accepts arguments of the
same types as the operands and that produces a result that is the same as the type of the
application. As aresult of this matching, some deductions will be made about r esul t - t ype,
and those deductionswill be stored inr esul t - t ype where they will be visible to everyone. The
remainder of the codefor t ype- of - expr essi on and itsauxiliary procedures can be used
unchanged, since each subexpression is considered exactly once.

Before considering the details of check- equal -t ype!, let's see how we might do this process
by hand.

Ast ype- of - expr essi on walksthrough the code, it introduces one type variable for each
formal parameter whose type is not declared, and one additional type variable for each application.
For each node in the abstract syntax tree of the expression we get some equations between types
and type variables.

For example, when typing a conditional expressioni f eot hen e1 el se ez in tenv, we must have

(type-of ~expression «fg» N0) = bool
(type-of-expression «f)» leny)

= (type-of-expression «fy» [EHU)

= (type-of-expression «if ¢y then ¢| else ¢;» fenD)



and when typing an application (rator randz . . . randn) in tenv, it must be that

(type-of-expression wrafors tenv) =
[ (cype-of -expression «and)» lenp)
¥ ... %

itypﬁ-nf-ﬁxprﬂﬁﬁinncﬂuﬂdwhfwuﬂ

Ll

(type-of expression « (rator rand, ... rand, ) » tenv) )

This saysthat at each application, the operator must be a procedure that maps the types of the
operands to the type of the entire application.

Finally, when typing pr oc expression pr oc (X1...Xn) expi n tenv, we must have

(type-of -expression sproc (X) ... Xp) expe lenp) =
{ (type-ocf-expression X [eNUy, )

* ... ® .

(type-of -expression Xy f{‘ﬂilmjy ]

-

(type-of -expression «xp» (ehlagy )

where tenvbody is the type environment in which the body exp is to be typed.

So to deduce the type of an expression, we'll introduce atype variable for each bound variable and
each application, and write out an equation for each compound expression using the rules above.
Since we type each subexpression in exactly one type environment, we don't need to worry about
the different values of tenv.

Then all we have to do is solve the resulting equations. The code solves these equations by calling
check-equal -t ype!, but wefirst consider how to solve these equations by hand.

Asan example, consider proc (f, x) (f +(1,x) zero? (x)).Let'sstart by making a
table of all the bound variables and applications in this expression, and assigning atype variable to
each one:

Expression Type Vari abl e
f tf

X t X

(f +(1,x) zero? t1

(x))

+(1, X) t2

zero? (x) t3



We know, by the procedure rule, that the type of the entire expressionis(tf * tx -> t1l).
We must find thetypest f, t x, and t 1.



Now, for each compound expression (either an application or a conditional; in this example we
have only applications), we can deduce a type equation:

Expressi on Type Equati on

(f +(1,x) zero? tf = (t2 * t3 ->11)

(x))

+(1, x) (int * int ->1int) = (int * tx ->12)
zero? (Xx) (int -> bool) = (tx ->t3)

Thefirst equation says that the procedure f must be prepared to take a first argument of the same
typeas+( 1, x) and asecond argument of the sametypeaszer 0? (x), anditsresult must be
of the same type as the application. The other equations follow similarly: in each case the | eft-
hand side is the type of the operator, and the right-hand side is a type constructed from the types of
the operands and the type of the application. The right-hand side is the type of those procedures
that "fit" in this application.

Wecanfillintf, tx, t1, t2,andt 3 inany way welike, solong asthey satisfy the three
type equations:

tf = (t2 * t3 ->tl)(int * int ->int) = (int * tx ->t2)(int -
> bool) = (tx -> t3)

We can solve such equations by systematic inspection. From the second equation, we conclude
tx = intt2 = int

Substituting these values into the remaining equations, we get
tf = (int * t3 ->tl)(int -> bool) = (int ->t3)

From the last equation, we deduce
t3 = bool

and substituting thisinto the first equation yields

tf = (int * bool ->1t1)



We have now solved for all the type variables, exceptt 1:
tf = (int * bool ->tl1)tx = intt2 = intt3 = bool
This process of repeated inspection and substitution is called unification.

We conclude from this calculation that we could assign our original term proc(f, x) (f +(1,
X) zero?(x)) thetype(tf * tx -> t1) orthetype((int * bool ->t1) *
int -> t1) foranychoiceof t 1. Thiscodewill work for any typet 1; wesay itis
polymorphicint 1.

Thisisreasonable, since the first argument f must be a procedure of two arguments. Itsfirst
argument must bean i nt (because + always producesani nt , and its second argument must be a
bool , but its output could be anything. The second argument x must beani nt becauseit isused
both as an argument to + and as an argument to zer 0?. The output from the entire procedure will
be the same as the output from f .

Let us consider the same example, but with the + changed to acons, withtype (i nt *
(list int) -> (list int)).Thentheequationswould be

Expressi on Type Equati on

(f cons(1, x) tf = (t2 * t3 ->11)

zero?(x))

cons(1, x) (int * (list int) -> (list int)) =
(int * tx ->12),

zer 0?(x) (int -> bool) = (tx ->13)

From the second equation, we deduce
tx = (list int)t2 = (list int)

Substituting these values into the third equation, we get
(int -> bool) = ((list int) -> t3)

But thereisno valuefor t 3 that will make these types the same: for them to be equal, we must
haveint = (list int),whichisfase.

So thisisan example where check- equal -t ype! reportsan error. Thisisthe correct
behavior, since the expression isinconsistent in its use of x: the first occurrence of x requiresit to
bealist of i nt s, and the second occurrence requiresit to beani nt . So the expression should be
rejected.



Exercise 4.15 [ * *] How can this approach be extended to do type inference by hand for al et expression?
For al et r ec expression?

Exercise 4.16 [ *] Write down and solve the type equations for the following examples.
l.proc (f,g,p,x) if (p (f x)) then (g 1 x) else addl ((f x))
2.proc (x,p,f) if (p x) then addl (x) else (f p x)

3.proc (x,p,f,g) if (p addl (x)) then addl ((f x)) else (g f x)
4.let x = 3 f = proc (x) addl (x) in (f x)

Treat add1 asif it were aprocedure of type (1 Nt - > i nt),and + asif it were a procedure of type
(int * int ->1int).

How doescheck- equal -t ype! solve equations like the ones in the preceding examples?
Instead of ssimply callingequal ?, check- equal -type! will recursively traverse the type
structures it is asked to equate. If it encounters atype variable that contains atype, it recurs on that
type. If it encounters atype variable that is empty, then it fills the type variable with the other type.

Figure 4.15 shows this algorithm at work on the example of page 157. In theinitial equation, the
left-hand sideisthe type variablet f , so check- equal -t ype! fillsit by inserting areference
to the right-hand side (shown in the figure as a dashed line). The resulting data structure is shown
in figure 4.15(a).

Figure 4.15(b) shows the data structure after processing the second equation. The equation is set
up as shown. The type variablet 2 is shared by the first and second equations. The procedure
check- equal -t ype! doesarecursivetraversal of the two trees. It observes that both sides are
2-argument procedure types, and both have first argument i nt . For the second argument, one side
isi nt andtheotherist x, soitfillst x withi nt . It then observes that the result type on one side
isi nt and ontheotherist 2, soitfillst 2 withi nt , yielding the structure shown in the figure.

After processing the third equation, the data structure looks like figure 4.15(c). Again, check-
equal - t ype! observesthat both sides are 1-argument procedure types. The argument on the
left sideisi nt . The argument on theright sideisasoi nt , because the right-side argument is

t X, which has already been filled with i nt . Thus the step in the manual algorithm of substituting
the new values into the remaining equations is unnecessary here because the substitution is done
automatically in the data structure. Last, check- equal -t ype! observesthat theresult typeis
bool onthe



left and t 3 ontheright, soit fillst 3 withbool . Thus, check- equal -t ype! smulatesthe
hand solution shown earlier and gets the same information.

Figure 4.15(d) shows the data structures built by check- equal -t ype! for the example on
page 159. Here the first two equations have been processed, and check- equal -t ype! has
begun to process the third equation. Comparing the types of the first argument, it discoversi nt
ontheleft, butt x whichis(li st int) ontheright. Since there are no type variablesini nt
or(list int),thereisnoway to makethese two types equal. Therefore check- equal -

t ype! reportsthat the equations cannot be solved.

Though both the checker of section 4.2 and the inferencer of this section use arecursive traversal
of the program to be checked, they work very differently. The checker always computes the type
of an expression from the type of its subexpressions. The type inferencer recursively walks
through the program, taking careful note of how each symbol is used and making deductions about
the types whenever possible. In the manual system we have used above, the notes take the form of
eguations. In the implemented system, the note-taking is automated, and takes the form of new
equations, introduced with check- equal -t ype! . Solving the equations consists of recursively
walking through the equations and making substitutions as necessary. Setting the contents of a
type variable effectively substitutes the new value for the type variable everywhere it appears.

The code for check- equal -t ype! isshownin figure 4.16. The procedure checks each way in
whicht 1 andt 2 can be equal:

1. It first determineswhether t 1 and t 2 are the same Scheme value. If so, it succeeds and returns
an unspecified value.

2.1f t 1 isatypevariable, it callsthe procedure check-t var - equal -t ype! ont1 andt 2,
passing exp for error-reporting purposes.

3. Symmetrically, if t 2 isatypevariable, it callscheck-t var - equal -type! ont2 andt 1.

4.1ft 1 andt 2 are atomic types, it determines whether they have the same name; if not, they
cannot be equal, and an error is reported.

5.1ft 1 and t 2 are both procedure types, it determines whether they have the same number of
arguments. If so, it recurs on each of the argument types and on the result type.

6. Otherwise, t 1 and t 2 cannot be equal, so an error is reported.
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(define check-equal -

type! (lanbda (t1 t2 exp) (cond ((eqv? t1 t2)) ((tvar-
type? t1l) (check-tvar-equal -type! t1 t2 exp)) ((tvar-type? t2) (check-
tvar-equal -type! t2 t1 exp)) ((and (atom c-type? t1) (atomc-

type? t2)) (if (not (eqv? (atom c-type-
>nanme t1) (atom c-type->nane t2))) (rai se-type-
error t1 t2 exp))) ((and (proc-type? tl1) (proc-

type? t2)) (let ((arg-typesl (proc-type->arg-

types tl)) (arg-types2 (proc-type->arg-

types t2)) (result-typel (proc-type->result-

type t1)) (result-type2 (proc-type->result-

type t2))) (if (not (= (length arg-

typesl) (length arg-types2))) (rai se-w ong- nunber - of -
argurments t1 t2 exp) (begin (for-

each (lambda (t1 t2) (check-equal -

type! t1 t2 exp)) arg-typesl arg-types?2) (check-
equal -type! result-typel result-

type2 exp))))) (el se (raise-type-error t1 t2 exp)))))(define check-
tvar-equal -type! (lanbda (tvar ty exp) (if (tvar-non-

enpty? tvar) (check-equal -type! (tvar-

>contents tvar) ty exp) (begin (check- no-

occurrence! tvar ty exp) (tvar-set-contents! tvar ty)))))

Figure 4.16 The unifier check- equal -t ype!




Figure 4.17 Creating acircular type

The procedure check-t var - equal -t ype! dealswith the case of equating atype variable
t var andatypety.Ift var containsatype, then we recur on its contents, calling check-
equal -t ype! toequatethat typetoty.

If t var isempty, we would like to set the contents of t var tot y, thus making them equal.
However, we have one more important detail to address: check- equal -t ype! recursonthe
structure of its arguments. So if the contents of the type variables create a cyclic structure,
check- equal -t ype! might fail to terminate. So wefirst call check- no- occurrence! to
make sure that the type variablet var does not occur within thetypety.

For example, consider the equation
tl = (int ->1t1)

If wefilledint 1, asshown infigure 4.17, we would get a cycle, which would cause check-
equal -t ype! toloop the next timeit encounteredt 1.

After first saving t y for error-reporting purposes, check- no- occurrence! recursonthe
structureof t y. If t y isan atomic type, thent var cannot occur init. If t y isitself atype
variable, then the code checksto seeif it isthe samevariableast var ; if itis, an error is reported.
Lagt, if t y isaprocedure type, then we recur on the argument types and the result type. (See
figure 4.18.)

Thereisonly one more place in the inferencer where we need to be concerned about type
variables. Thatisint ype-t o- ext er nal - f or m(figure 4.19). If t ype-t 0- ext er nal -

f or misgiven atype variable, then if the variable is empty, it should produce a suitable symbol; if
the variable contains a type, the result should be obtained by recurring on that type.

Exercise 4.17 [ * *] Complete the implementation of the type inferencer.

Exercise 4.18 [ *] Why won't the previous version of t ype- of - appl i cat i on work here? Why is
thistheonly t ype- of - procedure that needs to be modified?



(define check- no-

occurrence! (lanbda (tvar ty exp) (letrec ((loop
type (name) #t) (proc-type (arg-types result-type)
types) (1 oop result-type))) (tvar-
type (num vec) (if (eqv? tvar tyl)

Figure4.18check- no- occurrence!

(lanbda (tyl) (cases type tyl

(atomi c-

(begin (for-each | oop arg-

(rai se-occurrence-check tvar ty exp)))))))

(loop ty))))

{(define cype-to-external-£form
(lambda (ty)
{cases type LYy
(atomic-type (name) name)
(proc-type l(arg-types result-type)

lappend
{arg-types-to-external -form arg-types)
f==)

(list (type-to-external-form result-type))))
(tvar-type (serial-number container)

{if (tvar-non-empty? ty)
(Cype-to-external -form (Cvar-s>contents tyl)
(string-=symbol

(string-append
"ewar"
(number->string serial-number))))}i))

Figure4.19t ype-t o- external -form




Exercise 4.19 [ * *] Extend the inferencer to handle pair types, asin exercise 4.7.
Exer cise 4.20 [ * *] Extend the inferencer to handle list types, asin exercise 4.8. Modify the language so that enpt y1 i St no longer needs atype. (Hint: create atype variable in place of t).
Exercise 4.21 [ *] Write atranslator that erases all the types from a program, so that it can be interpreted by one of the interpreters from chapter 3.

Exercise4.22 [* * ] |f the procedure check- equal - t ype! processesa series of equations between type variables, such asti = tz, t2 = t3, t3 = t4, etc., it will generate a chain where t1 contains a reference to tz, t2 contains a reference to ts, etc.
The procedure check- equal - t ype! will then have to traverse these links before finding out any useful information about t1. Write an expression that causes this situation to arise. Then modify check- equal - t ype! so that whenever
t1 points to some type (other than a type variable) via some chain of references, al the type variables on the path are modified to point directly to the end point of the chain; thiswill save later pointer traversals. Thistechniqueis called path
compression and is known to improve the asymptotic complexity of the unification agorithm.

Exercise 4.23 [* * *] Our inferencer is very useful, but it is not powerful enough to allow the programmer to define procedures that are polymorphic, like the polymorphic primitives pai r or coOns, which can be used a many types. For example,
one would like to write programs like

letrec ? map (? f, ? x) = if null? (x) then enptyli st el se cons ((f car (x)), (map f cdr (x))) ? even (?vy) = if zero? (y) then true else (odd subl
(y)) ?o0dd (?y) = if zero? (y) then false else (even subl(y))in pair((map addl cons (3,cons (5,enptylist))), (map even cons (3,cons (5,enptylist))))

This expression uses ITALP twice, once producing alist of i Nt sand once producing alist of bOOI s. Therefore it needs two different types for the two uses. Since the inferencer of this section will find at most one type for map, it will detect the
clash betweeni Nt and bool and reject the program. (See exercises 4.7 and 4.8.)

Invent or discover through reading a technique for declaring procedures that are polymorphic.



Further Reading

Most current work in typed programming languages can be traced back to (Milner, 1978), which
introduces typesin ML as away of guaranteeing the reliability of computer-generated proofs.
(Ullman, 1997) gives agood short introduction; a complementary treatment is (Felleisen &
Friedman, 1996). The use of types to enforce data abstractions appears in (Reynolds, 1975) and is
used in CLU (Liskov, Snyder, Atkinson, & Schaffert, 1977). ML has a module system that
enforces similar boundaries; see (Paulson, 1996) for a good discussion with some interesting
applications.

Type inference has been discovered several times. The standard reference is (Hindley, 1969),
though Hindley remarks that the results were known to Curry in the 1950s. (Morris, 1968) also
presents type inference, but the widespread use of type inference did not happen until Milner's
1978 paper.
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5 Objects and Classes

Many programming tasks require the program to manage some piece of state through an interface.
For example, afile system has internal state, but we access and modify that state only through the
file system interface. Our queue abstraction in section 2.4 is an additional example of this
paradigm. In each case, the piece of state spans several variables, and changes to those variables
must be coordinated in order to maintain the consistency of the state. One therefore needs some
technology to ensure that the various variables that constitute the state are updated in a
coordinated manner. Object-oriented programming is a useful technology for accomplishing this
task.

In object-oriented programming, each managed piece of state is called an object. An object
consists of severa stored quantities, called its fields, with associated methods (functions) that have
access to the fields. The operation of calling a method is often viewed as sending the method name
and arguments as a message to the object; thisis sometimes called the message-passing view of
object-oriented programming.

Most often, one needs to manage several pieces of state with similar methods. For example, one
might have severadl file systems or several queuesin a program. To facilitate the sharing of
methods, object-oriented programming systems typically provide classes, which are structures that
specify the fields and methods of each such object. Each object is created as an instance of some
class.

Often, one wishes to define a new class as a small modification of an existing class by adding or
changing the behavior of some methods, or by adding fields. In this case, we say the new class
inherits from or extends the old class, since the rest of the class's behavior isinherited from the
original class.

This program organization is useful because it permits a straightforward translation from the
objects of the physical world or other application



domain to the objects of the program. Real-world objects typically have some state and some
behavior that either controls or is controlled by that state. For example, cats can eat, purr, jump,
and lie down, and these activities are controlled by their current state, including how hungry and
tired they are. Real-world objects are conveniently grouped into classes containing objects that
behave similarly except for differences that can be explained by their state. A particular cat shares
general behavioral characteristics with al cats, and also has state that changes with time. Classes
may be arranged hierarchically, reflecting for example that cats belonging to the same breed share
certain characteristics of the breed, as well as more general characteristics of al cats. Similarly,
cats al have characteristics common to mammals. Thisis easily modeled by inheritance.

Whether program elements are modeling real-world objects or artificial aspects of a system's state,
aprogram's structure is often clarified if it can be composed of objects that combine both behavior
and state. It is also natural to associate behaviorally-similar objects with the same class.

Closures give one example of the power of programming with objects. A closure is an object
whose state is contained in its free variables. A closure has a single behavior: it may be invoked on
some arguments. More often, however, one wants an object to have several behaviors. Object-
oriented programming languages provide support for this ability.

Another important feature of object-oriented languages is polymor phism, which means the ability
of an entity to have more than one form. In programming languages it often means the ability of a
value to have more than one type. In the context of object-oriented languages, the most common
kind of polymorphism is the ability of an instance of a subclass to play the role of an object of its
superclass, so that it may be used anywhere an instance of the superclass may be used. Another
form of polymorphism isintroduced in exercise 5.13. We study polymorphism in more detail in
chapter 6.

There is much debate over which attributes a language must have to be considered object-oriented,
but there is general agreement that the four elements just discussed are central:

* objects encapsul ate behavior (methods) and state (stored in fields),
» classes group objects that differ only in their state,
* inheritance allows new classes to be derived from existing ones, and

» polymor phism allows messages to be sent to objects of different classes.



class cl1 extends object fieldi field|j nmethod initialize (x) begin set i = x; set j = -

(0, x) end nmethod countup (d) begi n set i = +(i, d); set j = -

(j, d end nethod getstate () list(i, j)let t1 =0 t2 =0 0l = new c1(3)

in begin set t1 = send ol getstate(); send ol countup(2); set t2 = send o0l getstate
OF list(tl, t2) end

Figure 5.1 A simple object-oriented program

Though languages may support any combination of these features, there is great synergy in combining all four.
In this chapter we study the primary run-time structures of object-oriented programming. We present four implementations of the

same language, ranging from avery simple implementation to one that incorporates most features of arealistic implementation.

5.1 Object-Oriented Programming

Object-oriented languages use a variety of different words to describe similar concepts. We begin with an example to establish our
terminology and to illustrate aternatives. Figure 5.1 shows a simple program in our object-oriented language. It declaresc1 to bea
classthat inherits from obj ect . We



study inheritance in section 5.2. Each object of classc1 containstwo fieldsnamedi andj . Thefields
are sometimes called members or instance variables. The class ¢ 1 supports three methods, sometimes
called member functions, namedi ni ti al i ze, count up, and get st at e. Each method consists of
its method name, its method ids (also called method parameters), and its method body. The method
names correspond to the kinds of messages to which instances of c1 can respond. We sometimes refer to
"c1l'scount up method."

In this example, each of the methods of the class maintains the integrity constraint or invariant that i =
—j. A real programming example would, of course, likely have far more complex integrity constraints.

We next turn to execution of the program in figure 5.1. The expression first creates two variables, t 1
andt 2, and an object 01 of the class. When an object is created, itsi ni ti al i ze method isinvoked,
inthiscase settingi to3and| to-3. Theget st at e method of 01 isthen invoked, returning the list
(3 -3).Next,ol'scount up method isinvoked, changing the value of the two fieldsto 5 and -5.
Thenthe get st at e method isinvoked, returning thelist (5 -5) . Last, thevalueof I i st (t1,
t2) ,whichis((3 -3) (5 -5)),isreturned asthe value of the entire program.

In the program in figure 5.2 we have a tree with two kinds of nodes, i nt eri or _node and

| eaf _node. To find the sum of the leaves of anode, we send it the summessage. Generally, we do
not know what kind of node we are sending the message to. Instead, each node accepts the summessage
and uses its summethod to do the right thing. Thisis called dynamic dispatch, and is used to implement
subclass polymorphism. Here the expression builds a tree with two interior nodes and three leaf nodes. It
sends asummessageto thenodeol; 01 sendssummessagesto its subtrees, and so on, returning 12
at the end.

A method body can invoke other methods by using the identifier sel f, which is bound to the object on
which the method has been invoked. In some languages thisis called t hi s instead of sel f . Thus use
of sel f allows methods to be mutually recursive. For example, in

cl ass oddeven extends object nethod initialize () 1 nethod even (n) if zero?
(n) then 1 else send self odd(subl(n)) nethod odd (n) if zero?
(n) then 0 else send self even(subl(n))let ol = new oddeven()in send ol odd(13)



class interior_node extends object field left field right nethod initialize (I, r) begin set left =1; set right =r end nethod sum () +(send left sum
(),send right sun())class |eaf_node extends object field value nmethod initialize (v) set value = v nethod sum () valuelet 0l = new interior_node
( new i nterior_node( new | eaf _node(3), new | eaf _node(4)), new | eaf _node(5))in send 0l sum()

Figure 5.2 Object-oriented program for summing the leaves of atree

the methods even and odd invoke each other recursively, because when they are executed, sel f isbound to an object that contains them both. Thisis much like the dynamic-binding implementation of recursionin
exercise 3.32.

5.2 Inheritance

Inheritance allows the programmer to define new classes by incremental modification of old ones. Thisis extremely useful in practice. Inheritance supports hierarchical classifications of objects; for example, every
col or poi nt isapoint, but not vice versa. This can be modeled using inheritance, asin the classic examplein figure 5.3.

If class c2 extends class c1, we say that cl isthe parent of c2 or that c2 isachild of c1. Since inheritance defines c2 as an extension of c1, c1 must be defined before c2. To get things started, we introduce a class
obj ect with no methods or fields. Since obj ect hasnoi ni ti al i ze method, it isimpossible to create an object of classobj ect . Each class (other than obj ect ) hasasingle



class point extends object field x field y nethod initialize (initx, inity) begi n set x = initx; set y = inity end nethod nove (dx, dy) begi n set x = +(x, dx); set y = +(y, dy) end nethod get_location () Iist
(x, y)class col orpoint extends point field color nethod set_color (c) set color = ¢ nethod get_color () colorlet p = new point(3,4) cp = new col orpoi nt (10, 20)i n begin send p nove(3,4); send cp set_color(87); send cp nove
(10, 20); list(send p get_location(), %returns (6 8) send cp get_location(), % returns (20 40) send cp get_color()) %returns 87 end

Figure 5.3 Classic example of inheritance: COl or poi nt

parent, but it may have many children. Thus the relation ext ends imposes atree structure on the set of classes, with obj ect at theroot.
The genealogical analogy is the source of the term inheritance. The analogy is often pursued so that we speak of the ancestors of a class (the chain from a class's parent to the root class obj ect ) or its descendants.
If class c2 inherits from class c1, al the fields and methods of c1 will be visible from the methods of c2, unlessthey are redeclared in c2.

Since aclassinherits al the methods and fields of its parent, an instance of a child class can be used anywhere an instance of its parent can be used.



Similarly, any instance of any descendant of a class can be used anywhere an instance of the class can be used. Thisis sometimes called subclass polymorphism. If c2 is adescendant of c1, we sometimes say that c2 is asubclass of ¢1, and write c2 < c1, because the objects that can be used in place of an object of class c2 are a subset of
the objects that can be used in place of an object of class c1. Conversely, we sometimes say that c1 is a superclass of c2.

Since each class has at most one immediate superclass, this is a single-inheritance language. Some languages allow classes to inherit from multiple superclasses. Such multiple inheritance is powerful, but it is also problematic; we consider some of the difficultiesin the exercises.
If afield of clisredeclared in one of its subclasses c2, the new declaration shadows the old one, just asin lexical binding. For example, consider

class cl extends object field x fieldy method initialize () 1 nethod setxl (v) set x = v nethod setyl (v) set y =v nethod getxl () x nethod getyl () yclass c2 extends cl1 field y nethod sety2 (v) set y = v nethod getx2 () x nethod gety2 () ylet 02 = new c2
()in begin send 02 setx1(101); send 02 setyl(102); send 02 sety2(999); list(send 02 getxl(), % returns 101 send 02 getyl(), % returns 102 send 02 getx2(), % returns 101 send 02 gety2()) % returns 999 end

Here an object of classc2 hastwo fields named y: the one declared in ¢ 1 and the one declared in c2. The methods declared inc1 seec1'sfieldsx andy. Inc2, thex inget x2 refersto c1'sfield x, but they inget y2 refersto c2'sfield y.

If amethod mof aclasscl isredeclared in one of its subclasses 2, we say that the new method overrides the old one. If an object of classc2 issent an



m message, then the new method should be used. Thisruleissimple, but it has subtle consequences. Consider the
following example:

class cl extends object nethod initialize () 1 nmethod mi () 1 method n2 () send self ml
()class c2 extends c1 nmethod nl () 2let 0ol = new cl() 02 = new c2()in list(send o1 nl
0), send 02 ml(), send 02 nm2())

Weexpectsend ol nil() toreturnl, sinceol isaninstanceof c1. Similarly, we expect send 02 mil() to
return 2, since 02 isan instance of ¢2 and its method should clearly have priority in this case.

Now what about send 02 n2() ?Method n2 immediately calls method nil, but which one? The call happensin
classc1, soitispossible that the programmer intended send sel f ml() asacaltocl'sml, asinthe
oddeven example on page 172. Thisinterpretation is called static method dispatch, because the method to be
executed can be determined from the text of the declaration of class c 1, which is static information.

The aternate interpretation is that the programmer intended that any invocation of method nil on an object of class
c2 should get c2's method for mL, returning 2. Sincesel f iso2, whichisof classc2, thecall send sel f mil
() should return 2. Thisinterpretation is called dynamic method dispatch, because the actual method to be executed
for any given method call cannot be determined without knowing the actual class of the object on which the method
isinvoked, and thiswill only be known at run time.

To further illustrate the interaction of sel f and inheritance, consider the example in figure 5.4.

When 02 is sent the message nB, the method body in c1 isevauated, with sel f bound to 02. But 02's method
for n2 istheonein c2, since 02 isan instance of class c2. Thisis an important consequence of the use of dynamic
dispatch, which isavital part of the object-oriented programming paradigm.

In general, static method dispatch is meaningful only in alanguage with static types. In alanguage without types,
static method dispatch is meaningful only when the object of the call issel f (or in asuper call, discussed



class cl extends object nethod initialize () 1 nethod nl () 1 method n2 () 100 nethod nB () send self n2()

class c2 extends c1 nethod initialize () 1 nethod n2 () 2let ol = new c1() 02 = new c2()in list(send ol nl
O, %returns 1 send ol n2(), % returns 100 send ol nB(), % returns 100 send 02 ml
O, %returns 1 (fromcl) send 02 n2(), %returns 2 (fromc2) send 02 n8

) %returns 2 (cl's nB calls c2's nR)

Figure 5.4 Exampleillustrating interaction of Sel f and inheritance

presently). We therefore use dynamic method dispatch for the language of this section.
Thereis one occasion in which aform of static method dispatch is required, as the program in figure 5.5 illustrates.

We have supplied the classcol or poi nt with an overly specializedi ni ti al i ze method that setsthefield col or aswell asthefieldsx andy. However,
the body of the new method duplicates the code of the overridden one. This might be acceptable in our small example, but in alarge example this would clearly
be bad practice. (Why?) Furthermore, if col or poi nt declared afield x, there would be no way to initialize the field x of poi nt , just asthereis no way to
initialize the first y in the example on page 175.

The solution is to replace the duplicated code in the body of col or poi nt'si ni ti al i ze method with asuper call of theformsuper initialize ().
Thentheini ti al i ze method in col or poi nt would read

nethod initialize (initx, inity, initcolor) begin super initialize (initx, inity); set color = initcolor end



begin set x = initx; set y = inity end nethod nove (dx, dy) begin set x = +(x, dx); set y = +(y, dy) end nethod get_location () list (x, y)

class point extends object field x fieldy nethod initialize (initx, inity)
set x = initx; set y = inity; set color = initcolor end nethod set_color (c) set color = ¢ nethod get_color () colorlet ol = new col orpoint (3,4,172)

class col orpoint extends point field color method initialize (initx, inity, initcolor) begi n
in send ol get_color()

Figure 5.5 Example demonstrating a need for static method dispatch

To explain the operation of a super call, we introduce the notion of a host class. We call the class in which amethod is declared that method's host class. Similarly, define the host class of an expression to be the host class of the method (if any) in which the expression occurs.

A super call, super s(...),inthebody of amethod minvokesamethod s of the parent of m's host class. Thisis not necessarily the parent of the class of sel f . Toillustrate this distinction, consider figure 5.6. Sending an N8 message to an object 03 of class ¢ 3 finds c2's method for 8, which executessuper nil() . If super
niL() weredynamically dispatched, it would execute the ml method of the parent of the class of 03. The class of 03 isc3, whose parent is ¢ 2. So the super call would invoke ¢ 2's method for niL, returning



class cl extends object method initialize () 1 method mL () send self nR
() nethod n2 () 13class c2 extends c1 nmethod nil () 22 nmethod nm2 () 23 nethod nB () super nl
()class c3 extends ¢c2 nethod nl () 32 method n2 () 33let 03 = new ¢3()in send 03 nB ()

Figure 5.6 Example illustrating interaction of super cal withsel f

22. But that is not what happens. The correct interpretation of the super call uses static method dispatch. Since this call
occursin classc2, it executes the mL method of c2's parent ¢ 1, which invokes 03's m2 method. But 03 is an object of
classc3, soitisc3's 2 method that isfound, returning 33.

Though the object of a super method call issel f, method dispatch is static, because the specific method to be invoked
can be determined from the text, independent of the class of sel f .

5.3 The Language

We have so far presented object-oriented programming in terms of a set of examples. In order to proceed with an
implementation, we need to be more precise.

For our language, we extend the language of section 3.7 with the additional productions shown in figure 5.7. A program is
a sequence of class declarations followed by an expression to be executed. A class declaration has a name, an immediate
superclass name, zero or more field declarations, and zero or more method declarations. A method declaration, like a
procedure declarationinal et r ec, hasaname, alist of formal parameters, and a body.



(program) n= {{class-decl)}* (expression)
la-pregram (class-decls hﬂd?}:

class {identifier} extends (identifier)
{field (identifier)}* {(method-decl)}*
a-class-decl

(class-name Super-name

field-ids method-decls)

{class-decl)

{method-decl) = method (identifier) ({{identifier}}**)) (expression)
a-method-decl fﬁﬁﬁﬁad—ﬁame ids bﬂdF]E

(expression) = new (identifier) ({{expression)}''+’)
new-cbject-exp (class-name rands) |

(expression) = send (expression} (identifier) ({{expression}}''}
'mcthad—app-&xp [obj-exp method-name rands) |

{expression) = super (identifier) ({{expression}}*'+’)
'supcr—call—exp (meched-name randsJ:

Figure 5.7 New productions for a simple object-oriented programming language

We add objects and lists as expressed values, so we have

Expressed Value = Number -+ ProcVal + Obj+ List(Expressed Value)
Denoted Value = Ref(Expressed Value)

We write List(Expressed Value) to indicate that the lists may contain any expressed value. The
operations on lists are asin exercise 3.7. Last, we assume that we have abegi n expression, asin
exercise 3.39, that evaluates its subexpressions from left to right and returns the value of the last
one.

The definition of Obj depends on our choice of implementation. Classes are neither denotable nor
expressible in our language: they may appear as part of objects but never as the binding of a
variable or the value of an expression. (But, see exercise 5.22.)

We have added three expressions. The new expression creates an object of the named class. The
i ni tialize methodistheninvoked toinitialize the



fields of the object. Ther ands are evaluated and passed as parameterstothei ni ti al i ze
method. The value returned by this method call is thrown away and the new object is returned as
the value of the new expression.

A send expression consists of an expression that should evaluate to an object, a method name,
and zero or more operands. The object's class should include the named method, which is passed
the arguments obtained by evaluating the operands. As with procedure calls, the method body is
then evaluated within the scope of lexical bindings associating the method's parameters with the
corresponding arguments. Though not enforced, we refrain from sendinganiniti al i ze
method.

A super call expression invokes a method found by looking at the superclass of the expression's
host class. A super call consists of a method name and zero or more arguments. The object of the
send expression that caused the host method's body to be evaluated continues as the object asiif it
were asend expression. In al other respects, the super expression istreated the sameasa
send expression.

In the next section, we present four implementations of this language. They share abasis that
implements all of the non-object-oriented features of the language, including eval - pr ogr am
and eval - expr essi on.

When a program is evaluated, the class declarations are processed by el abor at e- cl ass-
decl s!, and then the expression is eval uated.

(define eval -program (Il anmbda (pgm (cases program pgm (a-
program (c-decls exp) | (el aborat e-cl ass-decl s! c-decls) (eval -
expression exp (init-env))))))

Each implementation must supply avauefor el abor at e- cl ass- decl s! . Thejob of this
procedure is to store the class declarations in some form that makes them accessible when needed
later in the computation.

The procedure eval - expr essi on contains, as usual, a clause for each kind of expression in
the language, including a clause for each of the three new productions. We consider each new kind
of expression in turn.

When asend expression is evaluated, the operands and the object expression are evaluated. Then
the method associated with the method name is found in the method declaration of the object and
then that method is applied to its arguments. Thisisthework of f i nd- met hod- and- appl vy,
whose second argument is the name of the class where the method is to be looked up. The
corresponding clausein eval - expr essi onis



(et hod- app- exp (obj-exp nethod-nane rands) (let ((args (eval -
rands rands env)) (obj (eval -expression obj -
exp env))) (find-net hod- and- apply met hod- nane (obj ect -
>cl ass-nanme obj) obj args)))

The proceduref i nd- et hod- and- appl y takes four arguments: a method name, the name of
the classin which to begin searching for the method, the value for sel f , and the list of
arguments. Here the search beginsin the class of the object. Each implementation must supply its
own definition for this procedure. Similarly, each implementation must supply a definition for
obj ect - >cl ass- nane.

Super method invocation is similar to ordinary method invocation except that the method is
looked up in the superclass of the host class of the expression. In our implementations, we make
sure that the name of this class is bound to a special variable named %super . Thisis not alegal
variable name in our language, so thereis no possibility of confusion, nor need we expand denoted
valuesto include class names. Thesel f will be the current self, which will likewise be bound in
the environment. It isthejob of f i nd- met hod- and- appl y to establish these bindings
correctly. The clausein eval - expr essi onis

(super-call -exp (nethod-name rands) (let ((args (eval -
rands rands env)) (obj (apply-env env 'self))) (find-
net hod- and- appl y net hod- nane (apply-env env ' %uper) obj args)))

Our last task is to create objects. When anew expression is evaluated, the operands are evaluated
and anew object is created from the class name. Then itsinitialize method is called, but its value
isignored. Finally, the object is returned.

(new- obj ect-exp (cl ass-nanme rands) (let ((args (eval -
rands rands env)) (obj (new object class-
nane))) (find-net hod- and- appl y "initialize class-
nane obj args) obj))

So each implementation must supply itsown el abor at e- cl ass-decl s!, fi nd-net hod-
and- apply, object->cl ass-nane, and new obj ect, and, of course, any data
structures and other procedures that these four procedures require.



5.4 Four implementations.

We present four implementations. The first is a naive implementation. The second chooses a more
realistic representation for objects. The third recognizes that most of the work that happens at
either object-construction time or method-application time can be done at class-construction time,
so that this work is accomplished once per program execution rather than once per object-creation
or method application. The last compresses a hierarchy of methods into a single structure for more
convenient searching.

5.4.1 A Simple Implementation
We begin with avery simple implementation.

In this implementation, we observe that a class declaration already contains the information that
we need, including the class's name, its immediate superclass's name, itsfield identifiers, and its
method declarations. Hence we represent classes and methods by their declarations. We build a

repository of class declarations by using a Scheme global variable, t he- cl ass- env:

(define the-class-env '())(define elaborate-class-decls! (lanmbda (c-
decl s) (set! the-class-env c-decls)))

The procedure| ookup- cl ass looksup aclassnameint he- cl ass- env and returns the
corresponding declaration.

We represent an object asalist of parts, with one part corresponding to each classin the
inheritance chain. Each part consists of class name and a vector to hold the state of the part. The
class declaration of thefirst part of thelist represents the lowest point on the class chain, and the
further down the list we move, the closer we get to the top of the hierarchy. For example, in the
program of figure 5.8, 03 will be represented by three parts, each representing the contributions of
oneof cl, c2,andc3. Therepresentation of 03 isshown infigure 5.9. Each part is defined by
the data type

(define-datatype part part? (a-part (cl ass-
nane symnbol ?) (fields vector?)))

To build an object, we construct alist of parts, given aclass name. If the classnameisobj ect ,
then we know that we have reached the top of the



class cl extends object field x fieldy nethod initialize () begi n set x = 11; set y = 12 end nmethod mL () ... X ... y ... nethod n2 () ... send self nB8
() ...class c2 extends cl1 fieldy nethod initialize () begi n super initialize(); set y = 22 end method nml (u, v) ... X ... y ... nethod nB ()

class c3 extends c2 field x field z nethod initialize () begi n super initialize(); set x = 31; set z = 32 end method nB () ... X ...y ... z ...

let 03 = new c3()in send 03 nl (7,8)

Figure 5.8 Sample program for OOP implementations

inheritance chain and there are no parts to construct. Otherwise, we find the class declaration corresponding to the given class name, and we return a list whose car is the first part and whose cdr is obtained by recurring
on the superclass. Thefirst part is constructed from the name of the current class and a vector containing as many elements as there are fields declared in the current class. When we are done, we have alist of
uninitialized parts.
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Figure 5.9 An object in the simple implementation

(define new object (lanbda (class-nane) (if (eqv? cl ass-

nane ' object) () (let ((c-decl (I ookup-class class-
nane))) (cons (make-first-part c-decl) (new
obj ect (cl ass-decl ->super-nanme c-decl))))))) (define make-first-

part (lanbda (c-decl) (a-part (cl ass-decl - >cl ass- nane c-
decl) (make-vector (length (class-decl->field-ids c-decl))))))

In this code, we use simple procedures to access individual fields of a node in the syntax tree. We
give these procedures names that include "- >" to suggest their behavior. For example,

(define class-decl->super-nanme (| anbda (c-decl) (cases cl ass-decl c-
decl (a-cl ass-decl (class-nane super-nane field-ids m
decl s) super-nane))))



We often generalize these " - >" accessorsto allow for compositions of accessors, and to use
| ookup- cl ass when necessary. For example, we write

(define class-nanme->nmethod-decls (lanbda (class-nane) (cl ass-decl -
>met hod- decl s (I ookup-cl ass cl ass-nane))))

Exercise 5.1 [ *] Use these techniques to define the procedurespar t - >f i el ds andpart -
>field-ids.

Our next chalengeisto implement f i nd- et hod- and- appl y. We search the classes along
the inheritance chain until we find a class that declares a method matching the method name.
When we do, we call appl y- net hod with the found method declaration, the name of the host
class, sel f, and the arguments.

(define find-nethod-and-apply (lanbda (m nane host-

nane self args) (if (eqv? host-nane 'object) (eopl:error 'find-
net hod- and- appl y "No nmet hod for name ~s" m nane) (let ((m
decl (| ookup-met hod-decl m nane (cl ass- name- >met hod-
decl s host-nane)))) (if (rethod-decl? mdecl) (appl y-

met hod m decl host-nane self args) (find-nmethod-and-apply m
nane (cl ass- nane- >super - nane host -

nane) self args))))))

The procedure| ookup- nmet hod- decl takes amethod name and alist of method declarations
and returns the matching method declaration or false if no matching method declaration is found.

Applying amethod is much like applying a closure. We must execute the body of the method in an
environment in which each variable is bound to the proper value. To do this, we build an
environment in which the first rib contains the bindings for %super , for sel f , and for the formal
parameters of the method. The rest of the environment provides a binding for each field variable
that is visible from the method. The field variables visible from the method are those of the parts
of the object starting with the host class. Consider the example in figure 5.8. If we execute send
o3 ml (7, 8),thenthefieldsvisible from method ml are those starting at the part of 03 that
corresponds to mlL's host class c 2. In thisway, a class name gives aview of the object; we can find
the view with the procedure vi ew obj ect - as:



(define viewobject-as (lanbda (parts cl ass-nane) (if (eqv? (part-
>cl ass-nane (car parts)) class-nane) parts (vi ew obj ect -
as (cdr parts) class-nane))))

From this view of the object, we can generate an environment consisting of onerib for each part.
Each rib binds the field variables of one part to the fields of that part, using the already-
constructed vector:

(define build-field-env (lanbda (parts) (if (null? parts) (empty-
env) (extend-env-refs (part->field-

ids (car parts)) (part->fields (car parts)) (build-field-
env (cdr parts)))))) (define extend-env-

refs (lanbda (syns vec env) (ext ended-env-record syns vec env)))

Now we can write appl y- nmet hod:

(define apply-nmethod (lanbda (mdecl host-

nane self args) (let ((ids (nethod-decl->ids m

decl)) (body (et hod-decl ->body mdecl)) (super -

nane (cl ass-name->super-nane host-nane))) (eval -

expressi on body (ext end-env (cons '%

super (cons 'self ids)) (cons super-

name (cons self args)) (build-field-env (vi ew obj ect -
as self host-nane)))))))

Figure 5.10 contains the environment built for the evaluation of the method body insend 03 nil
(7, 8) . We have now written the four required procedures, so our implementation is complete.

5.4.2 Flat Objects

We don't want to have to build all theseribs at every method call. It would be better to represent
all the storage managed by an object as a single vector, instead of spreading it over alist of parts.
This leads to the definition
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Figure 5.10 Environment for method application in simple implementation
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Figure5.11 An object in the flat representation

(define-dat atype object object? (an-object (cl ass-

name symnbol ?) (fields vector?)))

We choose to lay out the storage with the fields from the "oldest” classfirst. Thusin figure 5.8, an
object of classc1 would haveitsfieldslaid out as( x y) ; an object of classc2 would lay out its
fieldsas(x y y), withthesecondy being the one belonging to c2, and an object of classc3
wouldbeladoutas(x y y x z).Therepresentation of object 03 from figure 5.8 isshownin
figure 5.11.



This strategy has the useful property that any subclass of ¢ 3 will have these fields in the same
positions in the vector, because any fields added later will appear to the right of these fields. What
isthe position of x in amethod that is defined in any subclass of ¢37? Assuming that x is not
redefined, we know that the position of x must be 3 throughout all such methods. Thus, when a
field identifier is declared, the position of the corresponding value remains unchanged unless the
field identifier is redeclared.

Of course, we want the methods in class ¢ 3 to refer to the field x declared in ¢ 3, not the one
declaredin c1. To do this, we change the implementation of environments. In each rib, we use the
position corresponding to the rightmost occurrence of the variable name. So if theribis(x y vy
X z), x will refer to the rightmost x, whichistheonein c3.

To support this, weredefiner i b-fi nd- posi ti on.

(define rib-find-position (lanbda (nane synbols) (l'ist-find-1ast-
posi tion nanme synbol s)))

Exercise 5.2 [*] Why do the lexical environments of chapter 3 still work with the above definition of I i b-
fi nd- posi ti on?Seeexercise 2.16 for ahint.

Since we have changed neither the representation of classes nor the representation of methods, we
need consider only the two procedures new- obj ect and f i nd- et hod- and- appl y. We
start with new obj ect .

(define new object (lanbda (class-nane) (an- obj ect cl ass-

nane (make-vector (roll-up-field-length class-nane)))))(define roll-
up-field-length (lanbda (class-nane) (if (eqv? class-

nane ' obj ect) 0 (+ (roll-up-field-length (cl ass-
nane- >super - nanme cl ass-nane)) (length (class-nane->field-ids class-

name))))))

The procedurer ol | - up-fi el d-1 engt h isarecursive procedure that starts with a class name
and finds the total number of fields that must be allocated for an object of that class: if the class
nameisobj ect , thereare no fields;



otherwise the number of fieldsisthe sum of the number of fields needed for the class's parent and
the number of fields declared in the classitself.

The proceduref i nd- met hod- and- appl y isunchanged, sinceit does not deal with the
representation of objects, but we must redefine appl y- net hod. Since thereis only one vector
of field values, we modify appl y- net hod to build only asinglerib for the fields.

(define apply-method
{lambda (m-decl host-name self args)

(ler ((ids (method-decl->ids m-decl))
{bedy (method-decl-s>body m-decl))
(super-name (class-name->super-name host-name) )
(field-ids (roll-up-field-ids host-name))
(fields (cbhbject-=>fields self]))

(eval -expression body
(extend-env

(cons *%super (cons ‘self ids})
(cons super-name (cons self args))
fextend-env-refs field-ids fields (empty-env))))l})

The procedure appl y- met hod callsr ol | - up-fi el d-i ds to build amatching list of field
identifiers. Liker ol | - up-fi el d-1 engt h, it recurs up the inheritance chain, building up the
list of field identifiers using append. The order of the arguments to append guarantees that the
old field names precede the new ones, sofor c2 infigure5.8weget (X y Yy), asdesired.

(define roll-up-field-ids (lanbda (class-nane) (if (eqv? class-
nane ' obj ect) () (append (roll-up-field-
i ds (cl ass- nane- >super - nane cl ass- nane)) (cl ass- name-

>field-ids class-nane)))))

Figure 5.12 shows the environment built for the evaluation of the method body insend 03 ml
(7, 8) infigure5.8. Thisfigure shows that the vector may be longer than the list of identifiers:
thelist of identifiersisjust (x y y), sincethose are the only field variables visible from method
ml in c 2, but the vector in the environment is the vector of the entire object. However, since the
values of these three field variables are in the first three elements of the vector, this still works,
and sinceappl y-env usesl i st-find-1|ast-position,themethod mlL will associate the
variabley with they declaredinc2, asdesired.
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Figure 5.12 Environment for method application in the flat object representation

Thelist of identifiersis generally of the same length as the vector of field variables when the host
classand theclass of sel f arethe same. If the host classis higher up the class chain, then there
may be more vector elements than field identifiers, but the values corresponding to the field
identifiers will be at the beginning of the vector. The position of the identifier in thelist, as
reported by | i st - fi nd-1 ast - posi ti on, will always give the correct position for the field
variable.

Thisimplementation is quite inefficent, however, since we search the class chain whenever we
build an object (rol | - up-fi el d-1 engt h) orinvokeamethod (r ol | -up-fi el d-ids).
We address thisin our next implementation.

5.4.3 Moving the Work to Class-Declaration Time

Toavoidcallingrol | -up-fi el d-i ds at every method call, we need to compute this
information and store it with the method. While we're at it, we also store the name of the method's
superclass, for use in super calls. We create a new data type in which to keep this information:

(defi ne-dat atype nmet hod nmet hod? (a-nethod (et hod- decl net hod-
decl ?) (super-nanme synbol ?) (field-ids (list-of synbol?))))



Thisinformation is static: it does not depend on any expressed or denoted values that might show
up when the program is executed. So it would be much better to compute it exactly once per class.
To do this, we need a data type in which to keep the information:

(define-datatype class class? (a-class (cl ass-nanme synbol ?) (super -
nane synbol ?) (field-length integer?) (field-ids (list-
of synbol ?)) (et hods net hod- envi ronnent ?)))

We use an easy representation for method environments:
(define nethod-environment? (list-of method?))
In this representation the met hods dot contains only the methods declared in this class.

We build these classes at class-construction time by redefining the procedure el abor at e-
cl ass-decl s!:

(define el aborate-class-decls! (lanbda (c-decls) (for-each el aborat e-
cl ass-decl! c-decls)))(define elaborate-class-decl! (lanbda (c-

decl) (let ((super-nane (class-decl->super-nane c-

decl))) (let ((field-ids (append (cl ass-
nane- >fi el d-i ds super - nane) (cl ass-decl ->fi el d-
ids c-decl)))) (add-to-cl ass-env! (a-

cl ass (cl ass-decl - >cl ass- nane c-decl) super -

name (length field-ids) field-ids (roll-
up- et hod- decl s c-decl super-nane field-ids)))))))

Here the roll-up operations are so simple that they are not worth making into separate procedures.
The field identifiers are obtained by appending the fields of the current class declaration to those
of the superclass, which have



aready been computed and stored in the superclass's class structure. The number of fieldsis
calculated by taking the length of f i el d-i ds.

Theprocedurei ni ti al i ze-cl ass-env! initializesthe class environment to be empty by
setting t he- ¢l ass- env to the empty list, and the procedure add- t o- ¢l ass- env! addsthe
newly-constructed class to the list of classest he- cl ass- env. The procedurer ol | - up-

met hod- decl s turns each method declaration into amet hod, and returns the list of methods:

(define roll-up-nmethod-decls (lanbda (c-decl super-nane field-
i ds) (map (lambda (mdecl) (a-met hod mdecl super-
nane field-ids)) (cl ass-decl - >net hod-decl s c-decl))))

Figure 5.13 shows the class and method structures built for the evaluation of the class declarations
in figure 5.8. For smplicity, the figure does not include thei ni ti al i ze methods; neither does
it show the tags on the structures nor the details of the method declarations.

We must adjust f i nd- met hod- and- appl y and appl y- met hod to use this new
representation. The procedure f i nd- met hod- and- appl y isunchanged, except that every
reference to a method declaration is changed to a method. The procedure appl y- net hod now
takes a method instead of a method declaration asitsfirst argument, and it getsthe list of field
identifiers from the method instead of callingr ol | - up-fi el d-i ds. Similarly, we extract the
binding for %super directly from the method, so the host - nanme argument is not used.

{define apply-method
(lambda (method host-name self args)
(let {(ids (method->ids method))
(body (method-=body method))
[super-name (method->super-name method) )
(field-ids (method->field-ids method))
(fields (object->fields self}))
ieval-expression body
(extend-env
(cons *%¥super (cons ‘self ids))
(cons super-name (cons self args))
(extend-env-refs field-ids fields (empty-env))})}))

Exercise 5.3[*] Rewritef I nd- met hod- and- appl y andappl y- met hod so that the host
name is not passed as an argument to appl y- met hod.
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Figure 5.13 Class and method structures for sample program

Last, we change new- obj ect to get the required information from the class, rather than calling
roll-up-field-Ilength:

(define new object (lanbda (class-nane) (an- obj ect cl ass-
nane| (make-vector (class-nanme->field-length class-nane)))))



5.4.4 Flat Method Environments

In this section we modify the representation of classes so that each class contains not just the
methods declared in the class, but also those methods of its ancestors that may be invoked on
objects of the class. Thus, in the definition of a class

(define-datatype class class? (a-class (cl ass-nane synbol ?) (super -
nane synbol ?) (field-length integer?) (field-ids (list-
of synbol ?)) (et hods net hod- envi ronnent ?)))

the method environment will include all the methods that are reachable for objects of this class,
not merely the ones that are declared in this class. Thisis analogous to the transformation in
section 5.4.2 that replaced alist of field vectors by a single vector. This representation makes
method searching faster, and is used in chapter 6.

If the class structures contain information about all the reachable methods, then we no longer need
aloopinfi nd- met hod- and- appl y:

(define find-method-and-apply (lanmbda (m nane host -

nane self args) (let ((nmethod (I ookup-nmethod m

nane (cl ass- nane- >net hods host -

nane)))) (if (method? nethod) (appl y- mret hod net hod host -
name self args) (eopl :error 'find-nethod-and-

apply "No method for name ~s" mname)))))

To accomplish this, we must alter r ol | - up- et hod- decl s, which isresponsible for filling
the method-environment slot in each class structure:

(define roll-up-nmethod-decls (lanbda (c-decl super-nane field-

i ds) (mer ge- et hods (cl ass- nane- >net hods super -

nane) (map (lambda (mdecl) (a-met hod m decl super-
nane field-ids)) (cl ass-decl - >net hod-decl s c-decl)))))



The procedurer ol | - up- et hod- decl s combines the methods of the superclass with those
declared in the current class, using the auxiliary procedure ner ge- net hods.

(define nerge-nethods (lanbda (super-

net hods net hods) (cond ((nul'l? super-

met hods) net hods) (el se (let ((overriding-

nmet hod (1 ookup- net hod (et hod- >net hod-

nane (car super-

net hods)) net hods))) (i f overriding-

net hod (cons overri di ng- net hod (merge-

net hods (cdr super-net hods) (rermove- net hod overri di ng-

nmet hod met hods))) (cons (car super-net hods) (merge-
nmet hods (cdr super-net hods) met hods))))))))

It isthejob of mer ge- net hods to determine the order in which the methods are listed in the
class. We adopt a strategy similar to that used in section 5.4.2: methods are placed in their order of
declaration, from oldest to youngest. If a method of a superclass classis overridden, however, the
newer method isinstalled in place of the superclass's method. Hence in each classthereis at most
one method for each method name. This strategy yields the representation shown in figure 5.14.
Here the representation for classc 1 is as before. For class c2, method n8 is added at the end, but
the new version of ml appears in the first position. For ¢ 3, the methods il and n2 are as they
werein c2, but nB isreplaced by the new definition. Of course, the methods are shared, not
copied, but the diagram shows them asif they were copied for readability.

Exercise 5.4 [ * *] Redraw figure 5.14 to show the sharing of methods. Which of thef i el d- i ds listsare
shared?

Aswith the field layouts of section 5.4.2, this strategy has the property that in any subclass of ¢3,
the methods ml, n®2, and N8 will always appear in the first three positions of the method
environment. This property will be crucia for the optimizations to be considered in chapter 6.

The arguments to mer ge- et hods are the methods of the superclass and the current methods.
There are three cases to consider. Thefirst caseisthe
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Figure5.14 Class and method structures using flat method environments

simplest. If there are no super methods, then we simply return the remaining current methods.
Next we determine if a super method is being overridden. In that case, we replace the overridden
method by the overriding one. As part of the recursion, we remove the overriding one from the
current list of methods to be merged in. As aresult of this organization, we know that the super
method of a particular method is guaranteed to be in the same position



thoughout the inheritance chain. If it is not being overridden, we simply add it to the list. So, these
methods are in the same position as the ones in the super methods. The effect is to append the non-
overriding methods to the tail end of the super methods, and to replace those super methods that
are being overridden.

We haverevised el abor at e- cl ass-decl s! andfi nd- net hod- and- appl y; new
obj ect and obj ect - >cl ass are unchanged, so this completes our fourth and final
implementation.

5.4.5 Exercises

This section contains a variety of exercises based on the language and interpreters of this chapter.
Most can be done with any of the interpreters.

Exercise 5.5 [ * *] Complete each of these implementations of the language.

Exercise 5.6 [ *] Test the implementation from the previous exercise by running the test program in figure
5.15. It should result in alist with the following attributes: 15 appears twice, 35 appears 5 times, 50 appears
once, 100 appears twice, 200 appears twice, 300 appears once, and there are 6 sets of parentheses.

Exercise 5.7 [ *] Theinterpreter of section 5.4.1 stores the superclass name of a method's host classin the
lexical environment. It could instead store the host class name. Then it could retrieve the superclass name from
the host class name. Make this change to each of the four implementations.

Exercise 5.8 [ *] Implement the following using the language of this section:
1. The queue abstraction of figure 2.5.

2. Extend the queue class with a counter that counts the number of operations that have been
performed on the current queue.

3. Extend the queue class with a counter that counts the total number of operations that have been
performed on all the queuesin the class. (Hint: pass a shared counter object at initialization time.)

Exercise 5.9 [ * % *] Implement lexical addressing for this language. First, write alexical-address calcul ator
like that of exercise 1.31 for the language of this section. It should produce abstract syntax trees. Then modify
the implementation of environments so that the field identifiers are not kept in the ribs, and modify eval -
expr essi on sothatappl y- env takesalexical addressinstead of asymbol, asin exercise 3.25. Of
course, the lexical addresses calculated for the layered representation of objects (section 5.4.1) will be different
from those generated for the flat object representation used in the other implementations.

Exercise 5.10 [ % * *] Can anything equivalent to the optimizations of the preceding exercise be done for
method invocations? Discuss why or why not.



class a extends object fieldi fieldj nmethod initialize () 1 nethod setup ()

begi n set i = 15; set j = 20; 50 end nethod f () send self g
() method g () +(i, j)class b extends a fieldj field k nethod setup () begin set j = 100; set k = 200; super setup(); send self h
O end method g () list (i, j, k) method h () super g()class c extends b method g () super h() nethod h () +(k, j)
let p = proc (0) let u = send o setup() inlist (u, send o g(),

send o f())in list((p newa()), (p newb()), (p newc()))

Figure 5.15 Test program for exercise 5.6

Exercise5.11 [ *] Add to our language the expression i NSt anceof (exp, class-name). Itistrueif and only if the object obtained by evaluating exp is an instance of class-name or of one of its subclasses. In our framework, why must this
be an expression rather than a primitive?

Exercise 5.12 [ *] In our language, the environment for a method includes bindings for the field variables declared in the host class and its superclasses. Limit them to just the host class.
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Exercise 5.13 [ * *] Object-oriented languages frequently allow overloading of methods. This feature allows a
class to have multiple methods of the same name, provided they have distinct signatures. A method's signature
istypically the method name plus the types of its parameters. Since we do not have typesin our current
language, we might overload based simply on the method name and number of parameters. For example, a

classmight havetwo i Ni t i al i ze methods, one with no parameters for use when initialization with a

default field value is desired, and another with one parameter for use when a particular field value is desired.
Extend our interpreter to allow overloading based on the number of method parameters.

Exercise 5.14 [ * *] Add to our language a new expression,

dr ef obj field-id

that retrieves the contents of the given field of the object. Add also
dset obj field-id exp

which sets the given field to the value of exp.

Exercise 5.15 [ * *] Many object-oriented languages divide an object's fields into private fields, which are
only accessible lexically from within the class declaration, and public fields, which are accessible from
anywhere. Add this language feature to the language of the previous exercise. Hint: use the ideasin exercise
5.7.

Exercise 5.16 [ *#] Extend the results of exercise 5.14 to include super field references and super field
assignments.

Exercise 5.17 [ * *] Extend the syntax of our language so that each method declaration requires one of the
modifierspubl i ¢, protected,orpri vat e. A public method may be called from anywhere. A

protected method may be called only from the classin which it is declared or one of its subclasses. A private
method may be called only from its host class.

Exercise 5.18 [ *] In sections 5.4.3 and 5.4.4, redefine met hod- envi r onnent ? tobe ( vect or -
of met hod?) . What other procedures must be altered to accomodate this change?

Exercise5.19 [ * *] In section 5.4.4, could we have defined mer ge- met hods to be something very
smple, likeappend? What would be lost in doing so?

Exercise 5.20 [ *] In our interpreters, the classObj eCt isaspecia case becauseit is not explicitly
represented in the class environment. What procedures must be aware of this special case? Eliminate these
special cases by placing a class whose nameisObj ect into theinitia class environment. Give the class
obj ect ani ni ti al i ze method, so that it is possible to create an object of classObj ect , and so
that thereisadefaulti ni t i al i ze method.

Exercise 5.21 [ * *] In the languages of chapter 3, the process of creating procedures was separate from the
process of binding a procedure to a name, so a closure did not contain its name, eveninal et r ec. Modify
the representations used in this section so



that the representation of a class or method no longer contains its name, and modify class and method environments to resemble more closely the environments that were used in chapter 3. Then modify the representation of objects so that they contain a class rather than a class name.

Exercise 5.22 [ * * *] Design and implement an object-oriented language without explicit classes, using the observation that in the representation of the preceding exercise, each object contains its own methods and fields. Therefore we can replace each class by an object with the correct set of methods and fields. Such an object is
called aprototype. Replace the classObj ect by a prototype object with no methods or fields. Extend a class by adding methods and fields to its prototype, yielding a new prototype. Thuswe might writel et ¢2 = extend cl ... inseadofcl ass c2 extends cl ... .Replacethenewoperation

with an operation C| one that takes an object and simply copies its methods and fields. Methods in this language occur inside alexical scope, so they should have access to lexically visible variables, as usual, aswell as field variables. What shadowing relation should hold when afield variable of a superprototype has the same
name as avariable in acontaining lexical scope?

Exercise 5.23 [ * #] Many object-oriented languages include a provision for static or class variables. Static variables associate some state with a class; all the instances of the class share this state. For example, one might write:

class ¢l static next_serial_nunber = 1 field ny_serial_nunber nethod get_serial _nunmber () ny_serial _nunber nethod initialize () begi n set ny_serial _nunber = next_serial _nunber; set next_serial _nunber = addl
(next _serial _nunber) endl et ol = new c1() 02 = new cl()in list(send ol get_serial _nunber(), send 02 get_serial _nunber())

Each new object of class C 1 receives anew consecutive serial number.
Add static variables to our language. Since static variables can appear in amethod body, appl y- met hod must add an additional rib in the environment it constructs. What environment should be used for the evaluation of the initializing expression for a static variable (1 in the example above)?

Exercise 5.24 [ * * *] Modify the representation of environments so that Sel f isalways easily accessible, even from an interior scope of the method body. (One way of doing thisisto make Sel f an additional argument to the interpreter.) Then extend the lexical-address translator of exercise 5.9 so that variables that are
bound to fields are accessed as vector referencesfrom Sel f |, rather than being handled as a separate rib. The result should be an interpreter in which any field variable is accessible in constant time.



Exercise 5.25 [ * *] In exercise 5.13, we added overloading to the language by extending the interpreter.
Another way to support overloading is not to modify the interpreter, but to use a syntactic preprocessor. Write
a preprocessor that changes the name of every method mto one of the form m: @n, where n is the number of
parameters in the method declaration. It must similarly change the name in every method call, based on the
number of operands. We assume that :@ is not used by programmers in method names, but is accepted by the
interpreter in method names. Compilers frequently use such atechnique to implement method overloading.
Thisisan instance of ageneral trick called name mangling.

Exercise 5.26 [ * * *] Using the first example of inheritance from figure 5.5, we include a method in the class
poi Nt that determinesif two points have the same X and Yy coordinates. We add the method
si m | ar poi nt s tothe point class as follows:

net hod simlarpoints (pt) if equal ?(send pt getx(),x) then equal?
(send pt gety(),y) else O

Thisworks for both kinds of points. Sinceget X, gety,andsi m | ar poi nt s aredefinedin class

poOi Nt , by inheritance, they are defined in cOl or poi nt . Testsi m | ar poi nt s to compare points
with points, points with color points, color points with points, and color points with color points.

Next consider asmall extension. We add anew Si mi | ar poi nt s method tothe cOl or poi nt class.
We expect it to return true if both points are collocated, and further, in case both are color points, they have the
same color. Otherwise it returns false. Here is an incorrect solution.

net hod simlarpoints (pt) if super simlarpoints(pt) then equal?
(send pt getcolor(),color) else O

Test this extension. Determine why it does not work on all the cases. Fix it so that all the tests return the
correct values.

The difficulty of writing a procedure that relies on more than one object is known as the binary method
problem. It demonstrates that the class-centric model of object-oriented programming, which this chapter
explores, leaves something to be desired when there are multiple objects. It is called the binary method
problem because the problem shows up with just two objects, but it gets progressively worse as the number of
objects increases.

Exercise 5.27 [ * * *] We have treated super calls asif they were lexically bound. But we can do better: we
can determine SUpPer calsstatically. Since a super call refers to amethod in a class's parent, and the parent,
along with its methods, is known prior to the start of execution, we can determine the exact method to which
any super call refers at the same time we do lexical-addressing and other analyses. Write atrand ator that takes
each super call and replacesit with an abstract syntax tree node containing the actual method to be invoked.



Exercise 5.28 [ * * *] Dynamic method dispatch implies that at any method application site, the class of the object to which the
message is sent may vary from one call to the next. Though thisflexibility isvital, in practice for many call sitesthe class of the target
object does not change, or changes only occasionally. We may take advantage of this behavior by caching at the call site the class of the
last object of that call and the position at which the method was found for that call. With each new call the class of the call's object is
compared with the class of the last call. If they are the same (a cache hit) the method position is known without doing a new method
table lookup. Thistechniqueis called method caching. Implement caching in our interpreter.

Exercise 5.29 [ * *] Some object-oriented languages include facilities for named-class method invocation and field references. In a
named-class method invocation, one might writte named- send ¢l o mil() . Thiswouldinvoke € 1's Nl method on 0, so
long as O was an instance of C 1 or of one of its subclasses, even if ML were overridden in 0's actual class. Thusthisis aform of static

method dispatch. Named-class field reference provides a similar facility for field reference. Add named-class method invocation, field
reference, and field setting to the language of this section. How do these facilities fit in with the idea of classes as abstractions?

Exercise 5.30 [ * * *] Write atrandator that replaces method names in named method calls as in exercise 5.29 with numbers indicating
the offset of the named method in the run-time method vector of the named class. Implement an interpreter for the translated code in
which named method access is constant time.

Exercise 5.31 [ * * *] Multiple inheritance, in which a class can have more than one parent, can be useful, but may introduce serious
complications. What if two inherited classes both have methods of the same name? This can be disallowed, or resolved by enumerating
the methods in the class by some arbitrary rule, such as depth-first left-to-right, or by requiring that the ambiguity be resolved at the

point such amethod is called. The situation for fieldsis even worse. Consider the following situation, in which class C4 isto inherit
from € 2 and C 3, both of which inherit fromCc1:

class cl extends object field xclass c2 extends clclass c¢3 extends clclass c4 extends c2, c3

Does an instance of C4 have oneinstance of field X shared by C2 and C 3, or does C4 havetwo X fields: one inherited from ¢ 2 and
one inherited from € 3? Some languages opt for sharing, some not, and some provide a choice, at least in some cases. The complexity of
this problem has led to a design trend favoring single inheritance of classes, but multiple inheritance only for interfaces, which avoids
most of these difficulties.

Add multiple inheritance to the language. Extend the syntax as necessary. Indicate clearly what issues arise when resolving method and
field name conflicts. Characterize the sharing issue and its resolution.

Exercise 5.32 [ # * *] Invent, or discover through reading, atechnique for simulating multiple inheritance given single inheritance.
Demonstrate the technique by writing and testing a sample program that uses this simulation technique.



Further Reading

Simula 67 (Birtwistle, Dahl, Myhrhaug, & Nygaard, 1979) is generally regarded as the first object-
oriented language. The object-oriented metaphor was extended by Smalltalk in (Goldberg &
Robson, 1983) and by Actorsin (Hewitt, 1977). Both use human interaction and sending and
receiving messages as the metaphor for explaining their ideas. Scheme grew out of Sussman and
Steel€'s attempts to understand Hewitt's work. (Springer & Friedman, 1989) and (Abelson,
Sussman, & Sussman, 1985; 1996) both provide further examples of object-oriented programming
in Scheme and discuss when functional and imperative programming styles are most appropriate.
(Steele, 1990) and (Kiczales, des Riviéres, & Bobrow, 1991) describe CLOS, the powerful object-
oriented programming facility of Common Lisp. The derivation at the end of the chapter is based
on the implementation of C++ method tablesin (Ellis & Stroustrup, 1992).



6 Objects and Types.

In chapter 4, we showed how atype system could inspect a program to guarantee that it would
never execute an inappropriate operation. No program that passes the checker will ever attempt to
apply a non-procedure to an argument, or to apply a procedure or primitive to the wrong number
of arguments or to an argument of the wrong type.

In this chapter, we apply this technology to an object-oriented language. In addition to the safety
properties listed above, no program that passes our checker will ever send a message to an object
for which there is no corresponding concrete method, or send a message to an object with the
wrong number of arguments or with arguments of the wrong type.

In addition to guaranteeing these safety properties, our type analyzer produces information that
can be used to optimize programsin our language.

In section 6.1 we present this language and discuss its syntax and semantics. In section 6.2 we
present a checker that guarantees these safety properties. Last, in section 6.3, we show how the
type information can be used to produce significant optimizations in the execution of our
programs.

6.1 A Simple Typed Object-Oriented Language

A sample program in our typed object-oriented language is shown in figure 6.1. This program
definesaclasst r ee, which has asummethod that finds the sum of the valuesin the leaves, asin
figure 5.2, and an equal method, which takes another tree and recursively descends through the
treesto determine if they are equal. We consider the latter method in more detail below.



The major new features of the language are:
» Fields and methods are specified with their types, using a syntax similar to that used in chapter 4.
* The concept of abstract classes and methods is introduced.

* The concept of casting isintroduced, and thei nst anceof test from exercise5.11 is
incorporated into the language.

* The concept of subtype polymorphismis added to the language.
We consider each of these itemsin turn.

The new productions for the language are shown in figure 6.2. We add avoi d type as the type of
aset operation, and list types asin exercise 4.8. Asin section 4.3, we add identifiers to the set of
type expressions, but for this chapter, an identifier used as atype is associated with the class of the
same name. We consider this correspondence in more detail below. Classes take an optional
abstraction specifier. Methods require their result type to be specified, along with the types of their
arguments, using a syntax similar to that used in chapter 4. A new kind of method, called an
abstract method, is added. An abstract method does not have a body. L ast, two new expressions
areadded, cast andi nst anceof .

An abstract classis one which is not intended to be instantiated. For example, in figure 6.1, the
intention is that every treeis either an interior node or aleaf node; there are never any objects of
classt r ee. Thisrestriction can be enforced by a run-time check whenever anew object is
created. A classthat is not abstract is said to be concrete (or instantiable).

An abstract method is a placeholder for methods to be supplied by each subclass of a class. For
example, in figure 6.1, we need to be sure that every object of classt r ee has asummethod.
Therefore we include an abstract summethod in classt r ee. In our interpreter, an abstract
method is just another kind of method, and appl y- met hod will signal an error if an abstract
method is applied. The checker, however, will verify that every concrete subclassof t r ee
supplies a concrete summethod, so that no well-typed program will ever attempt to apply an
abstract method.

The next feature we add to the language isi nst anceof . The expressioni nst anceof exp
name returns a true value whenever the object obtained by evaluating exp is an instance of name
or of one of its descendants. Casting complementsi nst anceof . For example, our sample
program includes the method



abstract class tree extends object method int initialize () 1 abstractmethod int sum() abstractmethod bool equal (tree t)

class interior_node extends tree field tree left field tree right method void initialize (tree |, treer)  begin set left =1; set right =r  end nethod tree getleft () left nethod tree getright () right method int sum() + (send left sum(), send right sum()) nethod bool equal (tree t)  if instanceof t interior_node  then if send left equal
(send cast t interior_node getleft ()) then send right equal (send cast t interior_node getright ()) else false  else falseclass |eaf_node extends tree field int value method void initialize (int v) set value = v method int sum() value method int getvalue () value method bool equal (tree t)  if instanceof t leaf_node  then zero?(-(value,
send cast t leaf node getvalue ()))  else falselet ol = new interior_node( new i nteri or_node( new | eaf _node(3), new | eaf _node(4)), new | eaf _node(5))in Iist(send ol sun(), if send ol equal (01) then 100 el se 200)

Figure6.1A in the typed obj




(type-exp) = void
void-type-exp []:

(type-exp) n= list (lype-exp)
'list—type—exp [texp}:

(type-exp) n= (identifier)
class-type-exp (class-name) |

(class-decl) u= (abstraction-specifier) elass (identifier)
extends (identifier)
{field (type-exp) (identifier)}"
{{method-decl) }'
a-class-decl
(specifier class-name super-name
local-field-texps local-field-ids
method-decls)
(abstraction-specifier) :=
'cuncrete—specifier ()]

(abstraction-specifier) = abstract
abstract-specifier (]|

(method-decl) = method (type-exp) (identifier)
({{type-exp) (identifier)}*"+') (expression)

a-method-decl
(Lype-exp name
id-texps ids body)

(method-decl) n= abstractmethod (type-exp) (identifier)
({{type-exp} (identifier)}+ ')

an-abstract-method-decl
(type-exp name
id-texps ids)

{expression) n= cast {expression} {identifier)
cast-exp (obj-exp name}:

{expression} = instancecf (expression} (identifier}
instanceocf-exp (obj-exp name)

Figure 6.2 New productions for the typed object-oriented language




met hod bool equal

(tree t) i f instanceof t interior_node then if send left equal
(send cast t interior_node getleft ()) then send ri ght equal
(send cast t interior_node getright ()) el se fal se el se fal se

Theexpressioncast t interior_node checksto seeif thevalueof t isin fact an instance of

i nterior_node.Ifitis, thevalueof t isreturned; if not, an error issignalled. Ani nst anceof
expression returns atrue value if and only if the corresponding cast would succeed. Hence in this
example the cast is guaranteed to succeed, sinceit is guarded by thei nst anceof . The cast, in turn,
guardstheuseof send ... getleft ().Thecastexpressionisguaranteed to return avalue of class
i nt eri or _node, and therefore it will be safe to send thisvalueaget | ef t message.

Exercise 6.1 [ * *] Write an equality predicate for theclasst r ee that doesnot usei Nst anceof or cast.
Hint: what is needed here is a double dispatch, in place of the single dispatch provided by the usual methods. This can
be simulated as follows: Instead of asking the class of the argument t , the current tree should send back tot  a message
that encodes its own class, along with parameters containing the values of the appropriate fields.

The last new concept in the language is subtype polymorphism. This refersto the idea that an object of a
certain class can also be regarded as a value of any of its ancestor classes. Thisideais used, for example,
ini nst anceof . Weseeitin our example: i nt eri or _node requires two arguments of typet r ee,
but there are no objects of classt r ee. There are only objects of subclasses of tree. Subtype
polymorphism means that a procedure or method that expects an argument of a certain class can also take
an argument of any subclass of that class. This comes for freein the interpreter, but it requires some
modifications to the checker, which we discussin section 6.2.

For our implementation, we begin with the interpreter of section 5.4.4. Since most of the interpreter's
activity isindependent of types, we modify it as little as possible, and adopt a laissez-faire strategy
whenever we can. Since it isimpossible to apply an abstract method, we modify met hod- decl - >body
to raise an error when the program attempts to do so. See figure 6.3.

Finally, we add two new clausesto eval - expr essi on to evaluatei nst anceof and cast
expressions:



(define apply-nmethod (Ilanbda (rmethod host -

nane self args) (let ((ids (rmethod->ids nethod)) (body (et hod-
>body net hod)) (super-name (nethod->super -

nanme met hod)) (field-ids (nethod->field-

i ds net hod)) (fields (object->fields self))) (eval -
expressi on body (ext end-env (cons '%

super (cons 'self ids)) (cons super-

nane (cons self args)) (extend-env-refs field-ids fields (enpty-

env))))))) (define nethod->body (I|anbda (method) (et hod- decl -
>pody (et hod- >met hod-decl nethod)))) (defi ne nmet hod-decl -

>body (| anbda (nd) (cases net hod-decl nd (a- met hod-decl (result-
texp nane arg-type-exps ids net hod-

body) nmet hod- body) (an- abstract - met hod-decl (result-

texp nane arg-type-exps ids) (eopl:
error ' nethod-decl ->body "Can't take body of abstract nmethod")))))

Figure6.3appl y- met hod in the presence of abstract methods

(cast-exp (exp nane) (let ((obj (eval-
expression exp env))) (if (is-subclass? (object->class-
nane obj) nane) obj (eopl:error 'eval-
expressi on "Can't cast object to type ~s:~%
~s")))) (i nstanceof -exp (exp nane) (let ((obj (eval-
expressi on exp env))) (if (is-subclass? (object->class-

nane obj) nane) t he-true-val ue the-fal se-val ue)))



The procedurei s- subcl ass? traces the parent link of thefirst class structure until it either finds the second one or
stops at obj ect :

(define is-

subcl ass? (|l anmbda (nanel nane2) (if (eqv? nanel nane2) #t (let ((class (lookup-
cl ass nanel))) (let ((super-name (class->super-nane class))) (if (eqv? super-
nane 'object) #f (i s-subclass? super-nane nane2)))))))

This completes the modification of the interpreter for the language of this section.
Exercise 6.2 [ * *] Complete the implementation of thisinterpreter, and test it on a substantial body of programs.
Exercise 6.3 [*] Devise atest plan for thisinterpreter so that every clauseis exercised.

Exercise 6.4 [ *] Augment the interpreter so that it detects any attempt to create an object of an abstract class.

6.2 The Type Checker

We now turn to the checker for this language. The goa of the checker isto guarantee a set of safety properties. For our
language, these properties are those of the underlying procedural language, plus the following properties of the object-
oriented portion of the language: no program that passes our type checker will ever

* send a message to an object for which there is no corresponding method,
« send a message to an object with the wrong number of arguments or with arguments of the wrong type, or

« attempt to create an object of an abstract class, or an object of a concrete class in which one of the required abstract
methods of a superclass has not been supplied.

Since the fields of an object are created uninitialized, and we make no attempt to verify that thei ni t i al i ze methods
actualy initialize al the fields, it will still be possible for a program to reference an uninitialized field.



Hence our safety properties do not preclude attempting to operate on an uninitialized value.
Similarly, becauseit isin general impossible to predict thetypeof ani ni ti al i ze method, our
checker will not prevent the explicit invocation of ani ni ti al i ze method with the wrong
number of arguments or arguments of the wrong type, but the implicit invocation of

i nitializebynewwill always be correct. We discuss these issues in more detail below.

In chapter 4, we emphasized a rule-based derivation of types: for each kind of expression, we
wrote down arule that showed how to derive the type of the entire expression from the types of its
subexpressions. In more complex situations, however, it may not be entirely clear what the rule
should be for a given expression. In that case, we need some principles to help us decide on the
rule the checker should use.

The goal of the checker isto predict successfully the type of each expression, given the types of its
free variables. Asaresult, the proceduret ype- of - expr essi on bore aconsiderable
resemblance to eval - expr essi on: instead of evaluating each expression in an environment
containing the values of the variables, t ype- of - expr essi on processed each expressionin a
type environment containing the types of the variables. The analogy between ordinary
computation and such a partial computation, getting partial information about the answers from
partial information about the inputs, is called the principle of abstract interpretation.

We develop our checker using the principle of abstract interpretation. At every stage we proceed
asif we were writing an interpreter, except that we have only the types of the variables available
to us. We reuse as much as possible of the code and data structures of the original interpreter,
except that we have only the type information available.

We begin with the types. In chapter 4, it was afairly smple matter to determine when avalue was
of the right type: an integer value was of typei nt , aboolean value was of type bool , and a
procedurevaluewasof type(t1l * ... * tn -> t) if andonly if whenever it was given
arguments of typest 1, ..., tnitwouldproduceavaueof typet .

In the object-oriented paradigm, the situation is more complicated because we have two
competing notions: type and class. Every object has aclass. At first glance, the class of an object
appearsto be like atype in adynamic type system: it is atag that identifies the set to which the
object belongs. This notion, however, is not enough. In an object-oriented system, if class c2
extends c1, then an object of class c2 can be used in any context in which an object of class cl can
appear: the c2 object has all the methods of the c1 object, so it can accept any message that the cl1
object could accept. For example, in



the program of figure 6.1, the equal method must accept both interior nodes and leaves, that is, it
must accept any object whose classisasubclassof t r ee. Thisis subclass polymorphism.

Hence we adopt the following policy: we introduce atype ¢ for each class ¢, and we say that an
object is avalue of type c whenever its classis either c or aclass that isasubclass of ¢. Using this
terminology, we can say that i nst anceof x c tests whether the value of x has type c, not
whether it has class c.

To implement this policy, we add to the types of section 4.2 anew type for each class. For
convenience in testing, we also include list types, asin exercise 4.8.

{define-datatype type type?
{atomic-type
(name symbol?))
[{list-type
| (value-type type?))
{class-type
| {name symbol?))
(proc-type
[arg-types (list-of type?))
(resulb-type Lype?)))

We interpret an identifier in atype position as describing a class; thisis done by adding the
production

{type-exp) u= (identifier)

class-type-exp (class-name)

in figure 6.2, and modifying expand-t ype- exp tomap acl ass-type-exptoacl ass-
t ype (figure 6.4).

The checker begins with the implementation of t ype- of - pr ogr am By the principle of abstract
interpretation, t ype- of - pr ogr amshould be as similar as possibleto eval - pr ogr am Where
the interpreter has an environment env mapping identifiers to values, the checker will have atype
environment t env mapping identifiers to types. Where the interpreter has a class environment
mapping class names to class structures, the checker will have a static class environment mapping
class names to static classes, which will contain the static information about each class. Compare

t ype- of - progr amtoeval - pr ogr am



{define expand-type-expression
(Lambda (texp)
(cases Lype-exp texp
(int-type-exp () int-type)
{bool-type-exp () bool-type)
{void-type-exp () wvoid-type)
{(list-type-exp (texp)
(list-type (expand-type-expression texpl))
I (class-type-exp (name) (class-type name))
{proc-type-exp l(arg-texps result-texp)
(proc-type
[expand-Lype-expressions arg-texps)
{expand-type-expression result-texp)l))))

Figure6.4expand-t ype- expr essi on

(define eval -program (Ilanbda (pgm (cases program pgm (a-

program (c-decl s exp) (el aborat e-cl ass-decl s! c-decls) (eval -
expression exp (init-env))))))(define type-of-

program (Il anmbda (pgm (cases program pgm (a-program (c-

decl s exp) (statically-el aborate-cl ass-decls! c-decls) (type-

of - expression exp (enpty-tenv))))))

The procedurest ati cal | y- el abor at e- cl ass- decl s!, which checks al of the class
declarations and sets up the static class environment that will be used by the rest of the checker, is
invoked by t ype- of - progr am Thent ype- of - expr essi on findsthe type of the program
body.

Next we consider what will be in the static class environment. The ordinary class environment
maps each class name to a class containing its fields, methods, and the name of its parent. Hence
the static class environment should map each class name to a static class containing the types of its
fields, the types of its methods, and its parent. As before, each class contains al of the fields and
methods accessible from that class, not just the ones declared in the class. We also keep track of
whether the classis concrete or abstract.



For each method, we construct a static method, consisting of its static information, including its
name, whether or not it is abstract, itstype (asapr oc- t ype), and the name of its superclass.

(define-datatype static-class static-class? (a-static-class (cl ass-
nane symnbol ?) (super-name synbol ?) (specifier abstraction-
specifier?) (field-ids (list-of symbol ?)) (field-types (list-

of type?)) (met hods static-nmet hod-environment ?))) (defi ne-

dat atype static-nethod-struct static-nmethod-struct? (a-static-nethod-

st ruct (et hod- nane synbol ?) (specifier abstraction-

speci fier?) (type type?) (super-name synbol ?))) (defi ne static-method-

environment? (list-of static-method-struct?))

We build the static class environment by initializing it to an empty environment, and then
processing each class and adding it in turn.

(define statically-elaborate-class-decls! (lanbda (c-
decl s) (initialize-static-class-env!) (for-each statically-elaborate-
cl ass-decl! c-decls)))

Theprocedurest ati cal | y- el abor at e- cl ass-decl ! processes aclass declaration. First
it finds the names and types of all the fields of this class, consulting the superclassif needed. It
usesst ati cal | y-1 ookup- cl ass tolook up the superclass in the static class environment,
since the ordinary class environment does not exist. It then collects all the method declarations,
using the procedure st ati cal | y-r ol | - up- net hod- decl s to model the overriding of
methods, and adds the static class information to the static class environment. Then it verifies,
using check- f or - abst r act - met hods! , that if the current classis concrete, then all its
methods are concrete. Finally, it checks each of the methods. See figure 6.5.

Exercise 6.5 [ * *] Why must the class information be added to the static class environment before the
methods are checked? (Hint: what happens if a method body invokes amethod on sel f ?)



(define statically-elaborate-class-decl! (lanbda (c-decl) (cases cl ass-

decl c-decl (a-cl ass-decl (specifier class-nanme super-

name field-texps field-ids m

decl s) (let ((field-

i ds (append (if (eqv? super-

nane ' object) () (static-class-
>field-ids (statically-Ilookup-class super-

namne))) field-ids)) (field-

types (append (if (eqv? super-

nane ' obj ect) () (static-class-
>field-types (statically-Ilookup-class super-
nane))) (expand-t ype-expressions field-

texps))) (et hods (statically-roll-up-nethod-
decl s m

decl s specifier cl ass-

nane super-nane))) (add-to-static-cl ass-

env! (a-static-class cl ass- nane super -
nane speci fier field-ids field-
types nmet hods)) (check-for-abstract -

net hods! speci fier methods cl ass-nane) (for-

each (lambda (mdecl) (typecheck- net hod-decl! m
decl cl ass-nane super-nanme field-ids field-

types)) mdecls))))))

Figure65st ati cal | y- el abor at e- cl ass- decl !




(define statically-roll-up-nethod-decls (lanbda (mdecls specifier self-

nane super - nane) (statically-nerge-nmethods self-

nane (if (eqv? super-name 'object) () (static-class-
>met hods (statically-1lookup-class super-

nane))) (map (I anbda (mdecl) (et hod-decl -to-static-
net hod- struct m decl specifier self-nanme super-nane)) m
decls))))

Figure66stati cal | y-rol | - up- net hod-decl s

Exercise 6.6 [*] Writecheck- f or - abst r act - net hods! .

We next consider st ati cal | y-rol | - up- net hod- decl s, showninfigure 6.6. It isthe
static version of r ol | - up- net hod- decl s (section 5.4.4). It produces alist of static methods
by calingst ati cal | y- mer ge- net hods on the class name, the list of static methods from
the superclass, and a static method for each method declared in the current class. The procedure
net hod- decl -t o- st ati c- net hod- st ruct expandsthe type expressions and rearranges
the data to produce a static method from a method declaration. See figure 6.7.

The procedure st at i cal | y- mer ge- et hods (figure 6.8) produces alist of static methods,
taking inheritance into account, in the same order in which mer ge- net hods creates the list of
methods at run time. Methods are placed in their order of declaration, from oldest to youngest.
However, if amethod of an ancestor class is overridden, the newer method isinstalled in place of
the ancestor method. Hence in each class there is at most one method for each method name, as
shownin figure 5.14.

Theargumentsto st at i cal | y- mer ge- net hods are the static structures for the methods of
the superclass and the static structures for the methods of the host class. There are three cases to
consider. Thefirst case isthe simplest. If there are no super methods, then we simply return the
remaining current methods.



(define nethod-decl-to-static-nethod-struct (lanbda (m

decl specifier self-nane super-nane) (cases net hod-decl m decl (a-
nmet hod- decl (result-texp nanme id-texps ids body) (a-static-nethod-
struct name (concrete-specifier) (proc-

type (expand-type- expressions id-texps) (expand-type-
expression result-texp)) super - nane)) (an- abstract - nmet hod-
decl (result-texp nane id-texps ids) (a-static-nethod-

st ruct nane (abstract-specifier) (proc-

type (expand-type- expressions id-texps) (expand-type-
expression result-texp)) super-name)))))

Figure6.7 met hod- decl -t o- st ati c- met hod- st ruct

Next we consider whether the first super method is being overridden. In that case, we must check
to see whether the type of the overriding method is the same as that of the method being
overridden. We must check this because when we invoke a method of some object, say of typec,
we know only that the object will be either of ¢ or of one of its subclasses. If the type of the
method were different in the subclass, we would have no way of guaranteeing that it was being
called with correct arguments.

The one exception to thisruleisthe methodi ni ti al i ze. Thetypeof i niti al i ze will
generally change as we go from class to subclass, asin figure 6.1. Hence it isimpossible to predict
the type of an object'si ni ti al i ze method given only the type of the object. So, our checker
cannot prevent an explicit invocation of ani ni t i al i ze method with incorrect arguments. Since
initializeistypicaly caled only at object creation time, thisis not a serious flaw. If the
overriding method has the same type as the overridden one, or if we are dealing with

i nitialize method, we replace the overridden method by the overriding one. As part of the
recursion, we remove the overriding one from the current list of methods to be merged in.



(define statically-nerge-nmethods (Ianbda (class-nanme super-nethods nethods) (cond ((null? super-

met hods) et hods) (el se (let ((overriding-nethod (statically-I ookup-

met hod (static- et hod- >net hod- nanme (car super-

met hods) ) met hods) ) ) (i f overriding-

met hod (if (or (eqv? "initialize (static-
met hod- >net hod- nane (car super-

met hods))) (equal ? (static-nethod->type overridi ng-

met hod) (static-nethod->type (car super-

nmet hods)))) (cons overridi ng-net hod (statically-nerge-

met hods cl ass- nane (cdr super - et hods) (renove-
met hod overri di ng- net hod met hods))) (eopl:error 'statically-nerge-

met hods (string-append " ~%

Overriding nmethod ~s in class ~s of" "wrong type~%original: ~s~%

new. ~s") (static-net hod- >nmet hod- nane overri di ng- met hod) cl ass-

nane (static-nethod->type (car super-methods)) (static-nethod-

>t ype overridi ng- et hod))) (cons (car super-nethods) (statically-nerge-

met hods cl ass- nane (cdr super-net hods) nethods))))))))

Figure6.8st ati cal | y- mer ge- net hods




(define typecheck-nethod-decl! (lanbda (m decl specifier self-nanme super-

nane field-ids field-types) (cases nethod-decl m
decl (a-nmet hod-decl (result-texp nane id-

texps ids body) (let ((id-types (expand-type-expressions id-
texps))) (let ((tenv (ext end-

tenv (cons ' %

super (cons 'self ids)) (cons (cl ass-type super-
nane) (cons (class-type self-

nane) i d-types)) (ext end-
tenv field-ids field-types (enpty-

tenv))))) (let ((body-type (type-of-

expressi on body tenv))) (check-i s-

subt ype! body-type (expand-type-
expression result-texp) mdecl))))) (an-abstract -
net hod-decl (result-texp name id-texps ids) #))))

Figure6.9t ypecheck- nmet hod- decl !

Last, if the super method is not being overridden, we place it in the output and remove it from the
list of super methods.

A consequence of this organization is that the super method of a particular method is guaranteed
to be in the same position throughout the inheritance chain. The effect is to append the non-
overriding methods to the end of the super methods, and replace those super methods that are
being overridden.

Once all the static method information is collected, the static class information is added to the
static class environment. Then each of the method declarationsis checked, usingt ypecheck-
met hod- decl ! . We build atype environment that matches the run-time environment built by
appl y- met hod, and then verify that the type of the body matches its declared type. For an
abstract method, there is nothing to check. See figure 6.9.

By the principle of subtype polymorphism, the result of the body can be of any subtype of the
specified result type. Hence in place of check- equal -t ype! ,wecal check-i s-

subt ype! ,whichinturn callsi s- subt ype?, to compare the calculated and specified types of
the body.



(define check-is-subtype! (lanbda (t1 t2 exp) (if (is-

subtype? t1 t2) #t (eopl:error 'check-is-subtype! " ~%

~s is not a subtype of ~s in ~%s" (type-to-external -

formt1l) (type-to-external -formt2) exp)))) (define is-
subtype? (lanmbda (t1 t2) (cases type t1 (cl ass-

type (nanel) (cases type t2 (cl ass-

type (nane2) (statically-is-

subcl ass? nanel nane2)) (el se #f))) (else (equal? t1 t2)))))

The static class environment built for the sample program of figure 6.1 is shown in figure 6.10.
The static classes are in reverse order, reflecting the order in which the class environment is built.
Each of the three classes has its methods in the same order, with the same type, as desired.

Once all the method declarations are checked, we check the body of the program, usingt ype-
of - expr essi on.

Before adding any clausestot ype- of - expr essi on, we must modify this procedure to deal
with subtype polymorphism. If classc2 extends c 1, then an object of class c2 can be used in any
context in which an object of classc1 can appear. For example, in the program of figure 6.1, the
initialize methodofi nterior_node must accept as arguments both interior nodes and
leaves. The same considerations apply to any procedure. If we wrote aprocedurepr oc (tree
t) 1, that procedure should be able to take as an actual parameter new | eaf ( 3), despitethe
fact that the procedure was of type(tree -> i nt) andthe argument was of typel eaf . The
application should be legal whenever the type of each actual is a subtype of the corresponding
formal parameter.

So we must modify t ype- of - appl i cat i on to alow this. Luckily, only one line need be
changed:



((a-static-class | eaf _node tree (concrete-specifier) (value) ((atomc-

type int)) ((a-static-nmethod-struct initialize (concrete-
specifier) (proc-type ((atomc-type int)) (atomc-

type void)) tree) (a-static-method-struct sum (concrete-
specifier) (proc-type () (atomic-type int)) tree))) (a-static-

class interior_node tree (concrete-specifier) (left right) ((class-
type tree) (class-type tree)) ((a-static-nmnethod-

st ruct initialize (concrete-specifier) (proc-

type ((class-type tree) (class-type tree)) (at oni c-

type void)) tree) (a-static-nethod-struct sum (concrete-
specifier) (proc-type () (atomic-type int)) tree))) (a-static-
class tree object (abstract-specifier) O O ((a-static-nethod-

st ruct initialize (concrete-specifier) (proc-

type () (atomic-type int)) obj ect) (a-static-nethod-

st ruct sum (abstract-specifier) (proc-type () (atomc-

type int)) object))))

Figure 6.10 Static class environment built for the sample program




(define type-of-application (lanbda (rator-type rand-

types rator rands exp) (cases type rator-type (proc-type (arg-
types result-type) (if (= (length arg-types) (length rand-

types)) (begin (for-each| check-i s-

subt ype! rand-types arg-types rands) result-

type) (eopl:error 'type-of-expression (string-

append "Wong nunber of argunents in expression ~s:" "o~
Y%expected ~s~%got ~s") exp (map type-to-external -
form arg-types) (map type-to-external-formrand-

types)))) (el se (eopl:error 'type-of-

expr essi on "Rator not a proc type: ~%s~%

had rator type ~s" rator (type-to-external-formrator-type))))))

We may now proceed to include anew clauseint ype- of - expr essi on for each additional kind of
expression in our language. In each case, we find the type of each subexpression and pass this information
to an auxiliary procedure; we also pass the original expression for error reporting. See figure 6.11.

We consider each expression (figure 6.12) in turn. For anew expression, we first retrieve the class
information for the class name. If there is no class associated with the name, atype error isreported. We
then check to see if the classis abstract. If it is, atype error isreported. Last, wecall t ype- of -

nmet hod- app- exp with the types of the operandsto seeif thecall toi ni ti al i ze issafe. If these
checks succeed, then the execution of the expression is safe. Since the new expression returns a new
object of the specified class, the type of the result is the type corresponding to the specified class.

Method applications and super calls have much in common, so we deal with them together. For a method
application, we verify that the expression denoting the target of the application isin fact an object by
checking that itstypeisacl ass-t ype. If itis, weretrieve the class information associated with the
class name. If either of these type checksfail, atype error is reported. For a super call, we need to find the
parent of the class in which the current method was declared. Thisis bound in the type environment by

t ypecheck- net hod- decl !, and isretrieved by looking up %super . We also pass a boolean value
to indicate whether or not this was a super call.



(new- obj ect-exp (class-nanme rands) (type- of - new obj -

exp cl ass- nane (types-of -

expressions rands tenv) rands exp)) (et hod- app-
exp (obj-exp nmsg rands) (type- of - met hod- app- exp (type-of -
expressi on obj-exp tenv) nsg (types- of -

expressions rands tenv) r ands exp)) (super-call -
exp (nmsg rands) (type-of -super-call -exp (cl ass-type-
>nanme (apply-tenv tenv '%uper)) neg (types- of -
expressions rands tenv) rands exp)) (cast -

exp (expl cl ass-nane) (type- of -cast - exp (type-of -
expressi on expl tenv) cl ass- nanme exp)) (i nst anceof -
exp (expl cl ass-nane) (type-of -i nst anceof - exp (type-of -
expression expl tenv) cl ass- nane exp))

Figure6.11t ype- of - expr essi on clausesfor object-oriented expressions

Once thisinformation is collected, t ype- of - met hod- app- or - super -cal | , shownin
figure 6.13, obtains the type of the method from the static class structure. If there is no method
with the specified name in the class, then a"missing method" type error is reported. It then calls
t ype- of - appl i cat i on to see whether these arguments are legal for the method. Last, it
checks to see whether the call is a super call or not. If the call was a super cal, then the method
must be concrete. If the call was an ordinary call, then



(define type-of-newobj-exp (lanbda (class-nanme rand-

types rands exp) (cases static-class (statically-Ilookup-class class-
nane) (a-static-class (cl ass-name super-nane specifier field-
i ds field-types nethods) (cases abstracti on-

speci fier specifier (abstract-specifier () (eopl

error 'type-of-new obj -

exp "Can't instantiate abstract class ~s" cl ass-
nane)) (concrete-

specifier () (begin (type- of - met hod- app-

exp (class-type cl ass-

name) "initialize rand-

types rands exp) (cl ass-

type class-nane)))))))) (define type-of-nethod-app-exp (lanbda (obj-

type nsg rand-types rands exp) (cases type obj-type (cl ass-

type (cl ass-nane) (type- of - met hod- app- or - super -

cal | #f cl ass-nanme nsg rand-

types rands exp)) (el se (eopl :error 'type-of-nethod-app-

exp "~0an't send nessage to non-object ~s in ~%s" obj -
type exp)))))(define type-of-super-call-exp (lanbda (super-nanme nsg rand-
types rands exp) (type- of - met hod- app- or - super - cal | #t super-

nane nmsg rand-types rands exp)))

Figure 6.12 Checking the chapter 5 expressions




the method may be either concrete or abstract; when an actual object is supplied, we know the
method will be concrete because of the check in check-f or - abst r act - met hods! . To see
this, consider the following example:

abstract class cl extends object abstractnmethod int ml ()

class c2 extends c1 nethod int mL () 2 nethod int n2 () super ni()
class c3 extends c1 nethod int ml () 3let f = proc (cl x) send x nil

() 02 = new c2() 03 = new c3()in list((f 02), (f 03), send 02 n2())

Herethesend x nil() islegal, even though mil isabstract in c1, because mL will be concrete
in both of c1's concrete subclasses. But thesuper mnil() will cause an error, because it specifies
that ¢ 1's method for nil should be used, and c1 has no concrete method for mil.

Ani nst anceof expression executes without an error so long as its argument is an object. So
t ype- of - i nst anceof - exp returnsbool solong asitsargument is any object type and the
class nameisthat of aclass:

(define type-of-instanceof-exp (lanbda (ty cl ass-

nane exp) (cases type ty (class-type (nane) (if (statically-
i s-subcl ass? cl ass-nane ' object) bool -t ype (eopl

error 'type-of-instanceof-exp "~%Jnknown class ~s in ~%

~s" nane exp))) (el se (eopl:error 'type-of-

expressi on "~%-s not an object type in ~%s" ty exp)))))

For acast expression, the situation is alittle more complicated. Some cast expressions may
fail at run-time. In general, it isimpossible to guarantee statically that acast expression will
succeed. Hence the best the checker can do isto reject any cast expression that will aways fail.
At run-time, every cast operation should be guarded by a corresponding i nst anceof .

Theexpressoncast x c1 will succeed if the class of x iseither theclasscl oroneof cl's
subclasses. If the type of x isc2, then the potential values of



(define type-of-nmethod-app-or-super-call (lanbda (super-call? host-

nane nmsg rand-types rands exp) (let ((method (statically-
| ookup- et hod nsg (static-class-

>net hods (statically-1ookup-class host-

nane))))) (if (static-nethod-struct? method) (cases static-
net hod- struct net hod (a-static-nethod-struct (nethod-

nane specifier net hod-type super -
nane) (let ((result-type (type-of -
application nmet hod-type rand-

types ' () rands exp))) (i f super-

call? (cases abstraction-

speci fier specifier (concrete-specifier () result-
type) (abstract-specifier () (eopl
error 'type-of - method- or-super-call (string-
append "~%

Super call on abstract nethod ~s" "in class ~s i n~%
~s") msg host - nane exp))) result-
type)))) (eopl:error 'type-of-nethod-app-exp "~%

Class ~s has no nethod for ~s in ~%s" host - name nsg exp)))))

Figure6.13t ype- of - net hod- app- or - super - cal |

X may have classes that are any subclass of ¢2. So the cast can succeed only if the subclasses of
c1 and the subclasses of ¢2 have a non-empty intersection. If either c1 isasubclassof c2 or c2
isasubclass of c1, or they are the same, this intersection will be non-empty. Otherwisec1 and

c2 areincomparable in the inheritance hierarchy, and their descendants will be digoint. This leads
to the definition of t ype- of - cast - exp, below.



(define type-of-cast-

exp (lanbda (ty nane2 exp) (cases type ty (cl ass-

type (nanel) (if (or (statically-is-

subcl ass? nanel nane2) (statically-is-

subcl ass? nanme2 nanel)) (cl ass-type nane2) (eopl:

error 'type-of-expression "~%-s inconparable with ~s in ~%

~s" ty namel exp))) (el se (eopl:error 'type-of-
expression "~%-s not an object type in ~%s" ty exp)))))

This compl etes the presentation of the checker.
Exercise 6.7 [ *] Complete the implementation of the checker.

Exercise 6.8 [ *] Modify the design of the language so that every field declaration contains an expression that
isused to initialize the field. Such a design has the advantage that a checked program will never refer to an
uninitialized value.

Exercise 6.9 [ * *] Extend the checker to handlef i el dr ef andf i el dset , asinexercise 5.14.

Exercise 6.10 [ * *] Extend the checker of this sectionto handle| et t ype. Hint: treat type identifiersin the
same manner as in section 4.3, and initialize the type environment to bind each class name to a corresponding
classtype.

Exercise 6.11 [ * * *] Our definition of i S- Subt ype? isunnecessarily restrictive when dealing with
procedure types. For example, if C2 extends C 1, then aprocedure of type (i nt - > €2) could be used
whenever aprocedure of type (1 Nt - > C1) isexpected, since the result of the first procedure (a value of
type C 2) can always be used where the result of the second procedure is expected. Hence we should count
(int -> c2) asasubtypeof (i Nt -> c1).Similarly, aprocedure of type(C1 -> i nt)
can be used in place of aprocedureof type (€2 -> i Nt ), sincethefirst procedure will accept all the
arguments that the second would. Hence(C1 - > i nt) should beasubtypeof (C2 -> int).oOf

course, the same reasoning works for any pair types such that t2. <t1. Modify i S- Subt ype? to accept
these possibilities (called deep subtyping).

Exercise 6.12 [ * * *] An interfaceis a collection of method names and their types. We say that a class
implements an interface if it supplies methods of the correct type for each of the names in the interface. We can

make an interface into atype: if i 1 isaninterface, an object isof typel 1 if it isan instance of aclass that
implementsi 1. Interfaces provide a cheap way of achieving most of the benefits of multiple inheritance
(exercise 5.31).



For example, we could write

interface summable int sum()interface printable void print ()
class interior_node extends tree inplements sunmable inplenents printable nmethod void print ()
let p = proc (summabl e o) addl(send o sun()) g = proc (printable o) send o print()in ...

and we could apply P to any object of aclass that implemented SUMTRDI €, and  to any object of aclassthat implemented pr i Nt abl e, regardiess
of where those classes lay in the inheritance hierarchy.

Extend the checker to handle interfaces. Rewrite the example of figure 6.1 to maket I €€ an interface rather than an abstract class.

Exercise 6.13 [+ * *] With the extensions in the preceding exercise, our language handles single inheritance of implementation and multiple inheritance of
interfaces into classes. We could also define interfaces by inheritance. Extend the language and the checker to allow interfaces to inherit from other interfaces.

6.3 The Trandator

In this section we show how the information generated by the checker can be used to optimize the programsin our typed object-oriented
language. We write atranglator that processes our language to a slightly extended language, performing three optimizations:

1. Method lookups are replaced by direct access to the slot in which the method is stored (exercise 5.18),
2. Cdlstoi nst anceof whoseresult is predictable are replaced by boolean literals, and

3. Casts that are guaranteed to succeed are eliminated.



Method lookups are replaced because if we know the type of an object, we can predict where each method can be found in the object's method vector. Consider the following example:

abstract class cl extends object method int initialize () 1 method int mi () 11 abstractmethod int n2 ()
class c2 extends c1 nethod int nml () 21 nethod int n2 () 22 nethod int nm3 () 23class c3 extends c2 nethod int md () 34class c4 extends ¢c3 nethod int n2 () 42 nethod int nb () 45proc (c3 o) send o n2

O

In an object of class ¢ 3, the methods are laid out in the method table in the following order: mL n2 n8 n#%. Even though ml and n2 are overridden, they keep their placein the list. Furthermore, if classc3 is extended, asit isby c4, any additional methods
will be added to the right of these four, and these four methods will be stored in the first four positions in the vector. Hence, if variable x is of type ¢ 3, then we know that x will be bound to an object whose class is either ¢3 or one of its subclasses, and hence
the mL method of the object will bein position 0 of the table, the n2 method will be in position 1, the 8 method will bein position 2, and the m4 method will be in position 3. In particular, in the method application in the last line of the program, we know

that m2 will always be found in position 1.

To take advantage of thisfact, let us add to our language a new expression appl y- net hod- i ndexed, with syntax given by the production

(expression) 1= apply-methed-indexed {expression} {number)
({{expression}}*i-')
apply-method-indexed-exp (cbj-exp index rands)

We assume that this construct will not appear in our source programs. The goal of our translator will be to analyze the source program and convert all ordinary method applications to indexed method applications. For instance, in the preceding example, the
method application with abstract syntax tree ( net hod- app- exp (var-exp o) n2 ()) should be replaced by the abstract



syntax tree (appl y- net hod- i ndexed-exp (var-exp o) 1 ()).Similarly,inthe
sample program of figure 6.1, send | eft sun{) should be converted to the abstract sytnax
tree (appl y- net hod- i ndexed-exp (var-exp left) 1 ()).

The translator begins by type-checking the program. We do not use the resulting type, but this sets
up the static class environment and checks the entire program for type errors. It then trandlates the
program by doing asimple, grammar-directed traversal of the program:

(define translation-of-program (Ilanbda (pgn (let ((pgmtype (type-of-

program pgm)) (cases program pgm (a-program (c-
decl s exp) (a- program (transl ation-of-cl ass-decls c-
decl s) (transl ati on-of -expression exp (enmpty-tenv))))))))

Wefirst consider t r ansl at i on- of - expr essi on. This procedure takes two arguments, an
expression and a type environment. It recurs through the expression, passing along atype
environment. For expressions involving binding, it recurs on the subexpressions using the same
type environment that t ype- of - expr essi on would have used. Generally it simply
recursively copies the expression. The exceptions are method applications, i nst anceof
expressions, and cast expressions, where it performs optimizations based on the types of the
subexpressions. See figure 6.14. Figure 6.15 shows how the type environments are built (cf. figure
4.8).

Next we consider the tranglation of the expressions dealing with objects. A new expression is
trandlated by recursion. For a method application, we wish to produce an appl y- net hod-

I ndexed expression. To find the proper index, wefirst call t ype- of - expr essi on to find
thetype obj - t ype of the object on which the method is being invoked. We then find the
position pos of the given method in the static method table. Because methods are always laid out
in the order they are declared, we know that at execution time this method will always be at
position pos, even if the actual object is of asubclass of ¢l ass- nane. Hence we may safely
trand ate the method application asan appl y- met hod- i ndexed. Seefigure 6.16. The code
must specify an action in the case that obj - t ype isnot aclasstype, or that the method is
missing, but these cases are impossible, since they will already have been detected by t ype- of -
expr essi on.



(define transl ation-of -

expression (lanbda (exp tenv) (cases expression exp (lrit-

exp (nunber) exp) (true-exp () exp) (fal se-exp () exp) (var -
exp (id) exp) (primapp-exp (primrands) (primapp-

exp prim (transl ati ons- of -expressi ons rands tenv))) (if-

exp (test-exp true-exp fal se-exp) (if-exp (translation-of-
expression test-exp tenv) (transl ati on- of - expressi on true-

exp tenv) (transl ati on-of -expression fal se-exp tenv))) (app-
exp (rator rands) (app-exp (transl ati on- of -

expression rator tenv) (transl ati ons- of -

expressions rands tenv))) (let-

exp (ids rands body) (transl ation-of-1et-

exp ids rands body tenv)) (proc-exp (id-

texps ids body) (transl ati on-of - proc-exp id-

texps ids body tenv)) (letrec-exp (result-texps proc-nanes id-

texpss idss bodi es | etrec-body) (transl ati on- of -
| etrec-exp result-texps proc-nanes id-

texpss idss bodies | etrec-body tenv)) C (new- obj ect -
exp (class-nane rands) (new- obj ect-exp cl ass-

nane (transl ati ons- of -expressi ons rands tenv))) (super-call -
exp (nmsg rands) (super-call -exp msg (transl ati ons- of -
expressions rands tenv))) (et hod- app-exp (obj -

exp nmsg rands) (transl ati on- of - met hod- app- exp obj -

exp nsg rands tenv)) (i nstanceof - exp (obj -

exp nane) (transl ati on-of -i nst anceof - exp obj -

exp name tenv)) (cast-exp (obj-exp nane) (transl ation-of - cast -
exp obj-exp nane tenv)) )))

Figure6.14 Excerptsfromt r ansl at i on- of - expr essi on




(define translation-of-proc-exp (lanbda (id-

texps ids body tenv) (let ((id-types (expand-type-expressions id-
texps))) (proc-exp i d-texps i ds (transl ati on- of -
expressi on body (extend-tenv ids id-types tenv))))))

(define translation-of-Iet-

exp (lanmbda (ids rands body tenv) (let ((tenv-for-

body (extend-tenv i ds (types-of -
expressions rands tenv) tenv))) (let-

exp i ds (transl ati ons- of -

expressi ons rands tenv) (transl ati on- of - expressi on body tenv-for-
body))))) (define translation-of-letrec-exp (lanbda (result-texps proc-
nanes id-texpss idss bodies | etrec-body tenv) (let ((id-
typess (map expand-type-expressions id-texpss)) (result-

types (expand-type-expressions result-texps))) (let ((the-
proc-types (map proc-type id-typess result-

types))) (let ((tenv-for-body (extend-tenv proc-
nanes the-proc-types tenv))) (letrec-exp result-texps proc-
nanes id-texpss idss (map (I anbda (i d-

types ids body) (transl ati on- of -

expressi on body (extend-tenv ids id-types tenv-for-
body))) i d-typess idss bodies) (transl ati on- of -
expressi on | etrec-body tenv-for-body)))))))

Figure6.15 Trandatingpr oc, | et ,andl etrec




(define transl ation-of - net hod- app-exp (Il anbda (obj-exp nmsg rands tenv) (let ((obj-type (type-of-expression obj-

exp tenv))) (cases type obj-type (cl ass-type (cl ass-nane) (let ((class (statically-Iookup-class class-

nane))) (let ((pos (list-

i ndex (1l ambda ( net hod) (eqv? nsg (static-
nmet hod- >met hod- nane nmet hod) ) ) (static-class-

>met hods cl ass)))) (i f (number? pos) (appl y- met hod- i ndexed- exp (transl ati on- of -

expr essi on obj-exp tenv) pos (transl ati ons-of - expressi ons rands tenv)) (eopl

error 'transl ation-of - net hod- app- exp (string-append " ~%

Shoul dn't have gotten here: C ass" "~s has no nethod for ~s in ~%s") cl ass-

nane neg (et hod- app-exp obj-exp nsg rands)))))) (el se (eopl:error 'translation-of-
nmet hod- app- exp (string-append "~0%houl dn't have gotten here:" " Can't send nmessage to non-

obj ect" "~s in ~%s") obj -type (et hod- app-exp obj-exp msg rands)))))))

Figure 6.16 Trandating object-oriented constructs




For an expression i nst anceof ec, we compare the type of the object with the target class for
which it is being tested. If the type of the object is a subclass of the target class, then

i nst anceof will always succeed. We would like to simply emit t r ue, but it is possible that
evaluation of the expression e will cause a side-effect. Hence we emit begin €; t r ue end, where
€ isthetrandation of e. If the type of the target is a subclass of the type of the object, then we
need to generate atest. On the other hand, if the type of the object and type of the target class are
incomparable, we know that thei nst anceof should always be false, so we can emit begi n €
fal se end. Sinceall thetypes here are classtypes, weusest ati cal | y-i s- subcl ass?to
compare the classes and hence the types.

For acast expression, we similarly compare the type of the object and the type of the target class
towhich it isbeing cast. If the object type is known to be a subclass of the target class, then thisis
an up-cast, which always succeeds, and we merely emit the code that produces the object. If the
target classis a subtype of the object type, then we must emit the cast expression to perform the
check at run time. Otherwise, the types are incomparable, and the cast will alwaysfail. Thiscaseis
already detected by t ype- of - cast - exp, soit should not arise here. See figures 6.17 and 6.18.

Thethree procedurest r ansl at i on- of - net hod- app- exp, transl ation-of-
I nst anceof - exp,andtransl ati on- of - cast - exp constitute the heart of this example.
They show how type information can be used to eliminate run-time testing and searching.

All that remainsisto consider the translation of the class declarations. Thisis for the most part
straightforward recursive copying. The exception is that in order to trans ate the method bodies,
we must collect enough information to build the same type environment as that used to check the
body int ypecheck- nmet hod- decl ! . To do this, we pass the name of the class to

transl ati on- of - met hod- decl , which statically looks up the class and extracts the needed
information. See figure 6.19.

This completes the discussion of the translator.
Exercise 6.14 [ * *] Complete the implementation of the translator.

Exercise 6.15 [ * *] Because the type environment is always laid out in exactly the same way as the run-time
environment, we can use it to predict the lexical address of each lexical variable reference. Extend the
tranglator so that it produces alexical address for each variable reference, in the style of exercise 3.25. Do
something similar for variable assignments as well. Modify the interpreter to test this trandlator's output.



(define translation-of-instanceof-exp (lanmbda (obj-

exp name tenv) (let ((obj-type (type-of-expression obj-

exp tenv)) (obj-code (translation-of -expression obj -

exp tenv))) (cases type obj-type (class-type (obj-class-

nane) (cond ((statically-is-subclass? obj-class-

nanme nane) (begi n-exp obj-code (list (true-

exp)))) ((statically-is-subclass? nane obj-cl ass-

nane) (i nstanceof - exp obj -

code nane)) (el se (begi n-exp obj-code (list (false-
exp)))))) (el se (eopl:error 'translation-of-instanceof-
expression (string-append " ~%

Shoul dn't have gotten here:" ~s not an object type in ~%
~s") obj -type (i nstanceof -exp obj-exp nane)))))))

Figure6.17 Trandating i NSt anceof

Exercise 6.16 [ * *] Modify the translator so that it also predicts the position of a method in a super call.

Exercise 6.17 [ *] For asuper cal, we can do even better: we can predict at translation time not only the
position of the method but the method itself. Add to the grammar anew kind of expression, appl y-
nmet hod- i mredi at e, containing amethod and alist of operands. Then modify the translator so that for

asuper cal it producesan appl y- met hod- i nmedi at e expression containing the actual method to
be applied. Modify the interpreter to test this translator's output.

Exercise 6.18 [ * * *] Extend the transator to handle interfaces (exercise 6.12). Construct an example to show
that if i isan interface, objects of typel may have their methods arranged in different orders. What can be
done to optimize method application when all that is known about the target object is an interface that it
implements?

Exercise 6.19 [* *] Extendt r ans| at i on- of - i nst anceof - exp sothat it emitst r ue

instead of begine’; t r ue end (and similarly for f al S€) when it can guarantee that the execution of €
will have no side effects.



(define translation-of-cast-exp (lanbda (obj-exp nanme tenv) (let ((obj-

type (type-of-expression obj-exp tenv)) (obj-code (translation-of -
expressi on obj-exp tenv))) (cases type obj-type (cl ass-

type (obj-cl ass-nane) (cond ((statically-is-

subcl ass? obj - cl ass- name nane) obj -

code) ((statically-is-subclass? nane obj-cl ass-

namne) (cast-exp obj -

code nane)) (el se (eopl :error 'transl ati on-of - cast -
exp (string-append "~%

Shoul dn't have gotten here:" " ~s inconparable with ~s in ~
%-s") obj - cl ass-

nane nane (cast-exp obj-

exp nane))))) (el se (eopl:error 'translation-of-cast-
expressi on (string-append " ~%

Shoul dn't have gotten here:" "~s not an object type in ~%
~s") obj -type (cast-exp obj-exp nane)))))))

Figure 6.18 Trandating of cast

Exercise 6.20 [ * *] The trandator, as we have organized it, has the potential to recalculate the type of any
subexpression many times. Reorganize the translator so that the type checker produces not just atype, but an
annotated syntax tree for the entire program. The annotated tree should contain all the information in the
original syntax tree, along with the type of each expression and the type environment in which that expression
was checked. Then the trandlator can do arecursive walk over the annotated tree, retrieving the type
information and the type environment from the tree rather than reconstructing them.

Exercise 6.21 [ * * *] Another way to organize the translator is to modify the checker so it produces not just
the type, but the type and the translation of each expression in asingle recursive pass over the input tree.
Rewrite the translator following this organization.



(define translation-of-class-decls (lanbda (c-decls) (map transl ati on-
of -cl ass-decl c-decls)))(define translation-of-class-decl (lanbda (c-

decl) (cases cl ass-decl c-decl (a-cl ass-decl (specifier class-
name super - name | ocal -field-texps local-field-

i ds m decl s) (a-cl ass-decl specifier class-
nane super-nane | ocal -field-texps |ocal-field-

i ds (map (1 ambda (et hod-

decl) (transl ati on- of - met hod- decl net hod-

decl cl ass- nane)) mdecls))))))

(define transl ati on-of -nethod-decl (lanbda (m decl class-

name) (let ((class (statically-Iookup-class class-

nane))) (let ((super-name (static-class->super-

nane cl ass)) (field-ids (static-class->field-

ids class)) (field-types (static-class->field-

types cl ass))) (cases net hod-decl m decl (a- et hod-
decl (result-texp nane id-texps ids body) (let ((id-

types (expand-t ype- expressions id-

texps))) (let ((tenv (ext end-

tenv (cons '%

super (cons 'self ids)) (cons (cl ass-type super-
nane) (cons (class-type cl ass-

nane) i d-types)) (ext end-
tenv field-ids field-types (enpty-

tenv))))) (a- met hod- decl result-

texp nane id-texps ids (transl ation- of -

expression body tenv))))) (an-abstract - net hod-decl (result-
texp nane id-texps i ds) m
decl))))))

Figure 6.19 Trand ating class and method declarations




In chapter 5, we discussed dynamic versus static method dispatch. In static method dispatch, the choice of method depends on an object's type rather than its class. Consider the example

class cl extends object nethod int initialize () 1 nmethod int ml () 11 staticrmethod int n2 () 2lclass c2 extends cl1 nethod void mi () 12 staticrmethod int n2 () 22let f = proc (cl x) send x nil
0 g = proc (cl x) send x n2() o = newc2()in list((f o),(g o))

Whenf and g arecalled, x will havetypecl, but it is bound to an object of class c2. The method il uses dynamic dispatch, so c2's method for mil isinvoked, returning 12. The method n uses static dispatch, so sending an 2 message to x
invokes the method associated with the type of x, in thiscase c1, so 21 isreturned.

Exercise 6.22 [ * *] Modify the interpreter of section 6.1 to handle static methods. Hint: keep type information in the environment so that the interpreter can figure out the type of the target expressioninasend.
Exercise 6.23 [ * *] In the type checker, static methods are treated in the same way as ordinary methods, except that a static method may not be overridden by adynamic one, or vice versa. Extend the checker to handle static methods.

Exercise 6.24 [ * *] Extend the tranglator to handle static methods. A Send with a static method is trandated into an appl y- met hod- i nmedi at e, asin exercise 6.17.

Further Reading

The language in this chapter isloosely based on Java, but with far less syntax. (Arnold & Gosling, 1998) is the standard reference, but (Gosling, Joy, & Steele, 1996) is the specification for the serious reader. (Flatt, Krishnamurthi, & Felleisen, 1998)
formalizes a subset of Java. (Gamma, Helm, Johnson, & Vlissides, 1995) is a fascinating handbook of useful organizational principles for writing object-oriented programs. The principles of abstract interpretation, along with other methods of
program analysis, are presented in (Nielson, Nielson, & Hankin, 1999). (Abadi & Cardelli, 1996) defines a very simple object calculus, which is auseful foundation for the study of types in object-oriented systems.
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7/ Continuation-Passing I nterpreters

In chapter 3, we used the concept of environments to explore the behavior of bindings, which
establish the data context in which each portion of a program is executed. Here we will do the
same for the control context in which each portion of a program is executed. We will introduce the
concept of a continuation as an abstraction of the control context, and we will write interpreters
that take a continuation as an argument, thus making the control context explicit.

Consider the following definition of the factorial function in Scheme.
(define fact (lanbda (n) (if (zero? n) 1 (* n (fact (- n 1))))))

We can use aderivation to model a calculation with f act :

(fact 4)= (* 4 (fact 3))=(* 4 (* 3 (fact 2)))
= (4 (*3(* 2 ((fact 1))))=(* 4 (* 3 (* 2 (* 1 (fact 0)))))
=(2*4(*3(*2(*11))))=(*4(*3(*21)))=(*4(*32))=(*46)
= 24

Thisisthe natural recursive definition of factorial. Each call of f act is made with a promise that
the value returned will be multiplied by the value of n at the time of the call. Thusf act is
invoked in larger and larger control contexts as the cal culation proceeds.



Compare this behavior to that of the following procedures.

(define fact-iter (lanbda (n) (fact-iter-acc n 1)))(define fact-iter-
acc (lanbda (n a) (if (zero? n) a (fact-iter-acc (- n1l) (* n a)))))

With these definitions, we calcul ate:

(fact-iter 4)= (fact-iter-acc 4 1)= (fact-iter-acc 3 4)= (fact-iter-
acc 2 12)= (fact-iter-acc 1 24)= (fact-iter-acc 0 24)= 24

Here fact - it er - acc isawaysinvoked in the same context: in this case, no context at all.
Whenf act-iter-acc calsitsdf, it does so at the "tail end" of acall tof act-iter-acc.
We call thisatail call. No promise is made to do anything with the returned value other than to
return it asthe result of thecall tof act - i t er - acc. Thus each step in the derivation above has
theform (fact-iter-acc na).

When aprocedure such asf act executes, additional control information must be recorded with
each recursive call, and this information must be retained until the call returns. This reflects
growth of the control context in the first derivation above. Such aprocessis said to exhibit
recursive control behavior.

By contrast, no additional control information need be recorded whenf act-i t er-acc cals
itself. Thisisreflected in the derivation by recursive calls occurring at the same level within the
expression (on the outside in the derivation above). In such cases the system does not need an ever-
increasing amount of memory for control contexts as the depth of recursion (the number of
recursive calls without corresponding returns) increases. A process that uses a bounded amount of
memory for control information is said to exhibit iterative control behavior.

Why do these programs exhibit different control behavior? In the recursive definition of factorial,
the proceduref act iscalled in an operand position. We need to save context around this call
because we need to remember that



after the evaluation of the procedure call, we still need to finish evaluating the operands and
executing the outer call, in this case to the waiting multiplication. This leads us to an important
principle:

It isevaluation of actual parameters, not the calling of procedures, that requirescreating a
control context.

In this chapter we will learn how to track and manipulate control contexts. Our central tool will be
the data type of continuations. Continuations are an abstraction of the notion of control context,
much as environments are an abstraction of data contexts. We will explore continuations by
writing an interpreter that explicitly passes a continuation parameter, just as our previous
interpreters explicitly passed an environment parameter. Once we do this for the simple cases, we
can see how to add to our language facilities that manipulate control contexts in more complicated
ways, such as exceptions and threads. We conclude by showing how these ideas can be applied to
avery different programming paradigm, called logic programming.

In chapter 8 we shall see that the technique of converting to continuation-passing style is very
general and can be applied to many programs. The experience with continuations gained in this
chapter will greatly assist in understanding the general technique to come. Also, the additional
experience provided by the next chapter is necessary to obtain a general working knowledge of
continuations. It is a deep and subtle concept that can be mastered only by working with it from
several angles.

7.1 A Continuation-Passing I nterpreter

In our new interpreter, the major procedures such aseval - expr essi on will take athird
parameter. This new parameter, the continuation, is intended to be an abstraction of the control
context in which each expression is evaluated. We begin with an interpreter in figure 7.1 of the
language of section 3.7.

Our goal isto rewrite the interpreter so that no call to eval - expr essi on builds control
context: all of the control context will be contained in the continuation parameter.

Now, we know that an environment is a representation of a function from symbolsto locations.
What does a continuation represent? The continuation of an expression represents a procedure that
takes the result of the expression and completes the computation. So our interface must include a
procedure, appl y- cont , that takes a continuation cont and an expressed valueval and
finishes the computation as specified by cont .



(define eval -program (Ilanbda (pgm (cases program pgm (a-

program ( body) (eval -expression body (init-env))))))(define eval -
expression (lanmbda (exp env) (cases expression exp (rit-
exp (datum datum (var-exp (id) (apply-env env id)) (proc-
exp (ids body) (closure ids body env)) (letrec-exp (proc-

nanes i dss bodi es |etrec-body) (eval -expression |letrec-

body (ext end-env-recursively proc-

nanes i dss bodies env))) (if-exp (test-exp true-exp fal se-

exp) (if (true-value? (eval -expression test-

exp env)) (eval - expressi on true-exp env) (eval -
expression fal se-exp env))) (pri mapp-

exp (primrands) (let ((args (eval -

rands rands env))) (apply-primtive primargs))) (app-
exp (rator rands) (let ((proc (eval -

expression rator env)) (args (eval -

rands rands env))) (if (procval ? proc) (appl y-
procval proc args) (eopl:error 'eval -

expressi on "Attenpt to apply non-

procedure ~s" proc)))) (let-

exp (ids rands body) (let ((args (eval -

rands rands env))) (eval - expressi on body (extend-

env ids args env)))) (varassign-exp (id rhs-

exp) (begin (setref! (appl y-env-

ref env id) (eval - expressi on rhs-exp env)) 1)

Figure 7.1 Environment-passing I nterpreter

)))




What kind of continuation-builders will be included in the interface? We will discover these
continuation-builders as we analyze the interpreter. To begin, we will need a continuation-builder
for the context that says there is nothing more to do with the value of the computation. We call
this continuation ( hal t - cont ) , and we will specify it by

(apply-cont (halt-cont) val) = (begin (wite val) (newine))

assuming that we want to end the computation by writing the value of the entire expression passed
to the interpreter and then end the output line.

We rewriteeval - pr ogr amas:

(define eval -program (|anbda (pgm (cases program pgm (a-
program (exp) (eval -expression exp (init-env) (halt-cont))))))

We can now begin to rewriteeval - expr essi on. Thefirst few linesof eval - expr essi on
simply calculate avalue and return it, without calling eval - expr essi on again. In the
continuation-passing interpreter, these same lines send the same value to the continuation by
calling appl y- cont :

(define eval -

expression (lanbda (exp env cont) (cases expression exp (lit-

exp (datum (appl y-cont cont datunj) (var -

exp (id) (appl y-cont cont (apply-env env id))) (proc-

exp (ids body) (apply-cont cont (closure ids body env))) o))

Right now the only possible value of cont isthe halt continuation, but that will change
momentarily. It is easy to check that if the program consists of an expression of one of these
forms, the value of the expression will be applied to hal t - cont , which will cause the value to
be printed.

The behavior of | et r ec isalmost as simple: it creates a new environment without calling eval -
expr essi on, and then evaluates the body in the new environment. The value of the body
becomes the value of the entire expression. That means that the body is performed in the same
control context as the entire expression. The resulting code is unchanged from the original, except
for the addition of cont .



(letrec-exp (proc-nanes idss bodies |etrec-body) (eval -

expression | etrec-body (extend-env-recursively proc-
nanes i dss bodi es env) cont)).
We cannot say
(letrec-exp (proc-nanes idss bodies |etrec-body) (appl y-
cont cont (eval - expression | etrec-body (ext end- env-
recursively proc-nanes idss bodies env) (halt-cont))))

because using the continuation ( hal t - cont ) causesthe value to be printed. Thiswould also
defeat our purpose of making the control context explicit, because the call to eval -
expr essi on isin an operand position.

Let usnext consider ani f expression. Inani f expression, the first thing evaluated is the test, but
the result of the test is not the value of the entire expression. We need to build a new context that
will seeif the result of the test expression is atrue value, and evaluate either the true expression or
thefalse expression. Soineval - expr essi on wewrite

(if-exp (test-exp true-exp fal se-exp) (eval - expression test-
exp env (test-cont true-exp fal se-exp env cont)))

wheret est - cont isanew continuation-builder subject to the specification

(apply-cont (test-cont true-exp false-exp env cont) val) = (if (true-
val ue? val) (eval - expression true-exp env cont) (eval -
expressi on fal se-exp env cont))

We now have two continuation-builders, so we can implement them either using a procedural
representation or a data structure representation. The procedural representation isin figure 7.2 and
the data structure representation, using def i ne- dat at ype, isinfigure 7.3.

Hereis a sample calculation to show how these pieces fit together. Aswe did in section 3.5, we
write «exp» to denote the abstract syntax tree associated with the expression exp. Assume e0 isan
environment in which b is bound to true and assume kO istheinitial continuation, which isthe
valueof (hal t - cont) . The commentary isinformal and should be checked against the
definition of eval - expr essi on and the specification of appl y- cont . Thisexampleis
contrived because we have | et r ec to introduce procedures but we do not yet have away to
invoke them.



(define halt-

cont (lanbda () (lambda (val) (begin (wite val) (newine)))))
(define test-cont (lanbda (true-exp fal se-

exp env cont) (l ambda (val) (if (true-value? val) (eval -
expression true-exp env cont) (eval - expression fal se-

exp env cont))))) (define apply-cont (lanbda (cont v) (cont v)))

Figure 7.2 Procedural representation of continuations

(define-datatype continuation continuation? (halt-cont) (test-

cont (true-exp expression?) (fal se-

exp expression?) (env environnent ?) (cont continuation?))
(define apply-

cont (lanmbda (cont val) (cases continuation cont (hal t -
cont () (begin (wite val) (newine))) (test-cont (true-
exp fal se-exp env cont) (if (true-value? val) (eval -
expression true-exp env cont) (eval - expression fal se-

exp env cont))))))

Figure 7.3 Data structure representation of continuations




(eval -

expression <<letrec p (x) =x inif b then 3 else 4>> e0 kO0)=
whereel is(extend-env-recursively ... e0)(eval -expression <<if b
then 3 el se 4>> el kO0) = evaluatethetest expression( eval - expressi on <<pb>>
el (test-cont <<3>> <<4>> el kO0)) = send the value of b to the continuation
(appl y-cont (test-cont <<3>> <<4>> el kO) true)=evaluatethetrue
expression( eval - expressi on <<3>> el kO0) = send the value of the literal expression to
the continuation( appl y- cont kO 3) = invoke the final continuation with the final answer
(begin (wite 3) (newine))

Next we consider primitive applications. We will need to supply a continuation argument to
eval - r ands. This continuation will accept the arguments to the primitive and call appl y-
primtive to perform the primitive operation. Soin eval - expr essi on wewrite

(prinmapp-exp (primrands) (eval -rands rands env (primargs-
cont primcont)))

where pri m ar gs- cont isthe new continuation-builder, subject to

(apply-cont (primargs-
cont primcont) val) = (let ((args val)) (appl y-cont cont (apply-
primtive primargs)))

In the right-hand side, we bind ar gs to the value of val to connect this specification to code of
figure 7.1, which says (appl y-primtive primargs).

Beforefinishing eval - expr essi on, we turn our attention to the procedure eval - r ands, so
we will have a self-contained language we can test. It will be easier to analyzeeval - r ands if
we expand the use of map and give a name to each intermediate value asin figure 7.4(top). The
continuation-passing version of eval - r ands isin figure 7.4(bottom).

If r ands isempty, we return the empty list to the context. If r ands is non-empty, we evaluate
the first expression in acontrol context that will finish the computation. What should the
specification for eval - fi r st - cont be? Wewant it to evaluate the rest of the expressions,
create thelist of all the values, and return it by sending it to the continuation cont . Therefore we
expect it to be something like:



(define eval -

rands (Il anbda (rands env) (if (null? rands) "() (let ((first (eval-
expression (car rands) env)) (rest (eval -

rands (cdr rands) env))) (cons first rest)))))(define eval -

rands (Il anbda (rands env cont) (if (null? rands) (appl y-

cont cont '()) (eval - expression (car rands) env (eval -first-

cont rands env cont)))))

Figure 7.4 Direct and continuation-passing versionsof eval - r and

(appl y-cont (eval -first-
cont rands env cont) val) = (let ((first val) (rest (eval -
rands (cdr rands) env))) (appl y-cont cont (cons first rest)))

But thisis not right. Recall that in Scheme (| et ((x eo0)) e1) isthesameas( (| anbda (x)

e1) eo),sothel et 'sright-hand sides count as operand positions. Therefore the call to eval - r ands
isin an operand position, and that would require a control context. So we need to analyze this bit of code
in the same way we analyzed the bodies of eval - expr essi on and eval - r ands. In this expression,
we need to evaluate the call to eval - r ands in anew context that will finish the computation. So we
have

(appl y-cont (eval -first-cont rands env cont) val) = (eval -
rands (cdr rands) env (eval -rest-cont val cont)) (appl y-cont (eval -rest-
cont first-val cont) val) = (let ((first first-
val ) (rest val)) (appl y-cont cont (cons first rest)))

The following cal culation shows how continuations are used in operand evaluation. As before, itis
helpful to check the commentary against the definitions of eval - expr essi on, and now eval -
r ands, and against the specifi-



cation of appl y- cont . Assume €0 is an environment in which x isbound to 3, y isbound to 4,
and z isbound to 5. We also assume, for the sake of this example, that the addition primitive can
take more than two arguments.

(eval - expressi on <<+(x,Yy, z)>> e0 kO) = begin evaluating actualsin new
continuation( eval -rands <<(x,y,z)>> e0 (primargs-cont <<+>> kQ0))=
evaluate first actual in a new continuation( eval - expr essi on <<x>> e0 (eval -
first-cont <<(x,y,z)>> e0 (primargs-cont <<+>> k0)))= x isbound
to 3, so apply the continuation to 3( appl y-cont (eval -first-cont <<(x,vy, z)

>> e0 (primargs-cont <<+>> k0)) 3) = continueevaluating actuals( eval -
rands <<(y,z)>> e0 (eval-rest-cont 3 (primargs-cont <<

+>> k0) ) ) = evaluate second actual( eval - expressi on <<y>> e0 (eval-first-
cont <<y, z>> e0 (eval -rest-cont 3 (primargs-cont <<

+>> k0))))= y isboundto 4, sosendit to the continuation( appl y-cont (eval -
first-cont <<(y,z)>> e0 (eval -rest-cont 3 (primargs-

cont <<+>> k0))) 4) = continueevaluating actuals( eval - rands <<(z)

>> e0 (eval-rest-cont 4 (eval -rest-cont 3 (primargs-
cont <<+>> k0)))) = evaluatethird actual( eval - expressi on <<z>> e0 (eval -
first-cont <<(z)>> e0 (eval -rest-cont 4 (eval -rest-

cont 3 (primargs-cont <<+>> k0)))))



= z isboundto 5, so send it to the continuation( appl y-cont  (eval -first-cont <<

(z)>> el (eval -rest-cont 4 (eval -rest-cont 3 (prim
args-cont <<+>> k0)))) 5) = continue evaluating actuals( eval - r ands <<()

>> e0 (eval-rest-cont 5 (eval -rest-cont 4 (eval -rest-

cont 3 (primargs-cont <<+>> k0)))))=nomoreactuals, so apply
continuation to empty list( appl y-cont (eval -rest-cont 5 (eval -rest-

cont 4 (eval -rest-cont 3 (primargs-cont <<

+>> k0)))) ' ())=consvalueontolist(appl y-cont (eval -rest-

cont 4 (eval -rest-cont 3 (primargs-cont <<

+>> k0))) ' (5))=consvalueontolist( appl y-cont (eval-rest-

cont 3 (primargs-cont <<+>> k0)) '(4 5))=consvalueontolist( appl y-

cont (primargs-cont <<+>> k0) ' (3 4 5))=invokethe primitive( appl y-
cont kO (apply-primtive <<+>> '(3 4 5))) =sendtheresulttotheoriginal
continuation kO( appl y-cont kO 12)

We now have aworking interpreter, which we display in figure 7.5. Figure 7.6 shows the
implementation of continuations using def i ne- dat at ype.



(define eval -program (Ilanbda (pgm (cases program pgm (a-

program ( body) (eval - expression body (init-env) (halt-cont))))))
(define eval -

expression (lanbda (exp env cont) (cases expression exp (rit-
exp (datum (apply-cont cont datum) (var-exp (id) (apply-

cont cont (apply-env env id))) (proc-exp (ids body) (appl y-
cont cont (closure ids body env))) (letrec-exp (proc-

nanes i dss bodies |etrec-body) (eval -expression letrec-

body (extend-env-recursively proc-

nanes i dss bodi es env) cont)) (if-exp (test-exp true-

exp fal se-exp) (eval - expression test-exp env (test-
cont true-exp fal se-exp env cont))) (primapp-

exp (primrands) (eval -rands rands env (prinargs-

cont primcont))) ))) (define eval -

rands (lanmbda (rands env cont) (if (null? rands) (appl y-

cont cont '()) (eval -expression (car rands) env (eval -first-

cont rands env cont)))))

Figure 7.5 First continuation-passing interpreter

Exercise 7.1 [ *] Implement this data type of continuations using procedural representation.

Exercise 7.2 [ *] In the example above, eacheval - f i r st - cont continuation keeps one more

expression than it needs to. Modify the constructor eval - f i r st - cont sothat it keeps only the
expressions remaining to be evaluated.

Exercise 7.3[*] Rewriteappl y- cont infigure 7.6 to eliminate the use of Scheme | et -expressions.



(define-datatype continuation continuation? (halt-cont) (test-

cont (true-exp expression?) (fal se-

exp expression?) (env environnent ?) (cont continuation?)) (prim

ar gs-cont (primprimtive?) (cont continuation?)) (eval-first-

cont (exps (list-

of expression?)) (env environnent ?) (cont continuation?)) (eval-
rest - cont (first-value expval ?) (cont continuation?)) )

(define apply-

cont (lanmbda (cont val) (cases continuation cont (hal t-

cont () (begin (wite val) (newine))) (test-cont (true-

exp fal se-exp env cont) (if (true-value? val) (eval -
expression true-exp env cont) (eval - expression fal se-

exp env cont))) (prinargs-

cont (primcont) (let ((args val)) (appl y-cont cont (apply-
primtive primargs)))) (eval -first-cont (exps env cont) (eval -
rands (cdr exps) env (eval -rest-cont val cont))) (eval -rest -
cont (first cont) (let ((rest val)) (appl y-

cont cont (cons first rest)))) )))

Figure 7.6 Continuations for figure 7.5




Exercise 7.4 [* *] Add variable assignment to this interpreter by including a new continuation-builder
(varassign-cont env id cont).

Exercise 7.5 [ * *] Modify the solution to the previous exercise so that the environment is not kept in the
continuation.

Exercise 7.6 [* *] Our trandation of eval - r ands evaluated the expressions in |eft-to-right order. Write
anew trandation of eval - r ands that evaluates the expressions in right-to-left order. Write out a
derivation of eval - expr essi on usingthe expression «+ (X, Yy, Z) », theenvironment €0, and
the continuation K O like the one above for this tranglation.

Exercise 7.7 [ * *] When we said that appl Y- cont took a continuation and an expressed value as

arguments, we were not quite accurate: a continuation built by pr i m ar gs- cont , for example, expects
to be passed not an expressed value but alist of expressed values. Which continuation-builders build
continuations that expect to be passed a list of expressed values? Make this distinction explicit in the

interpreter by splitting the datatype cont i nuat i on into two datatypes. expval -

conti nuati onandexpval -11i st-conti nuati on, with application proceduresappl y-
expval - cont andappl y- expval -1 i st - cont, sothat the argumentsof appl y-
expval - cont aeanexpval - cont i nuat i on and an expressed value, while the arguments of
appl y-expval - i st-cont aeanexpval -l i st-conti nuati onandalist of
expressed values.

We've now done most of the language of figure 7.1. Let us next consider | et expressions. The
original codefor | et was

(let-exp (ids rands body) (let ((args (eval -
rands rands env))) (eval - expressi on body (extend-
env ids args env))))

In the continuation-passing interpreter, we need to call eval - r ands in acontext that will finish
the computation. So in the continuation-passing version of eval - expr essi on we write

(let-exp (ids rands body) (eval -rands rands env (let-
exp-cont ids env body cont)))

and we add to our continuations interface the specification

(apply-cont (let-exp-cont ids env body cont) val) = (let ((new
env (extend-env ids val env))) (eval - expressi on body new env cont))

Thelast thing in our language is procedure application. In the environment-passing interpreter, we
wrote



(app-exp (rator rands) (let ((proc (eval-

expressi on rator env)) (args (eval -

rands rands env))) (if (procval ? proc) (appl y-
procval proc args) (eopl :error 'eval -

expressi on "Attenpt to apply non-procedure ~s" proc))))

Here we have two callsto consider, aswe didin eval - r ands. So we must choose one of them to be
first, and then we must transform the remainder to handle the second. Furthermore, we will have to pass
the continuation to appl y- pr ocval , because appl y- pr ocval containsacall toeval -
expressi on.

We choose the evaluation of the operator to befirst, soineval - expr essi on we write

(app-exp (rator rands) (eval - expression rator env (eval -
rator-cont rands env cont)))

with the untransformed continuation specified by

(appl y-cont (eval -rator-

cont rands env cont) val) = (let ((proc val) (args (eval -
rands rands env))) (if (procval ? proc) (appl y-

procval proc args cont) (eopl:error 'eval -

expr essi on "attenpt to apply non-procedure ~s" proc)))

Aswith eval - r ands, we will need another continuation-builder to represent the context around the
call toappl y- procval . Thisyields the specification

(appl y-cont (eval -rator-

cont rands env cont) val) = (let ((proc val)) (eval -rands rands env (eval -
rands-cont proc cont))) (apply-cont (eval-rands-

cont proc cont) val) = (let ((args val)) (if (procval ? proc) (appl y-
procval proc args cont) (eopl:error 'eval -

expressi on "Attenpt to apply non-procedure ~s" proc)))



Last, we must modify appl y- pr ocval tofitin this continuation-passing style:

(define apply-
procval (lanbda (proc args cont) (cases procval proc (closure (ids body env) (eval -
expressi on body (extend-env ids args env) cont)))))

This completes the presentation of the continuation-passing interpreter. The complete interpreter is shown in figures 7.7—7.8.
The complete specification of the continuationsis shown in figure 7.9.

Now we can check the assertion that it is evaluation of actual parameters, not the calling of procedures, that requires creating a
control context. What expressions require the building of new continuations? Continuations are built for:

« Evaluation of thetest in a conditional (thet est - cont continuation).
* Evaluation of the operands to a primitive (the pri m ar gs- cont continuation).

« Evaluation of the operator and operands of a procedure call (theeval - r at or - cont andeval - r ands- cont
continuations).

« Evaluation of theright-hand-sides of al et expression (thel et - exp- cont continuation).

Each of these islike the evaluation of an operand. The other continuation-builders, eval - fi r st - cont andeval - r est -
cont , aretriggered only from these continuations.

But procedure calls do not themselves grow control contexts. Consider the evaluation of (f x y z), wheref isbound to
some closure cl 00.

(eval -expression <<(f x y z)>> e0 kO) = evaluate operator( eval - expressi on <<f>> e0 (eval -
rator-cont <<(x,y,z)>> e0 k0)) = sendthe closureto the continuation( appl y-cont (eval -rat or-
cont <<(x,y,z)>> e0 kO) clo0)



= evaluate the operands( eval -rands <<(x,y,z)>> e0 (eval-rands-

cont cl 00 kO)) = evaluate expressions as on page 250( appl y-cont  (eval - rands-
cont clo0 kO) ' (3 4 5))=recevetheargumentsand apply the closure( appl y-
procval clo0 '(3 4 5) kO)

So the closure is applied, and its body is evaluated, in the same continuation in which it was
called. It isthe evaluation of operands, not the entry into a procedure body, that requires control
context.

Exercise 7.8 [ * *] Add the begin expression of exercise 3.39 to the continuation-passing interpreter. Be sure
that no call toeval - expr essi onoreval - r ands occursin aposition that would build control
context.

Exercise 7.9 [ *] Instrument the interpreter of figures 7.7—7.9 to produce output similar to that of the
calculation on page 250. Watch out for the circular links in environments built by | et r ec.

Exercise 7.10 [ *] Trandate the definitionsof f act andf act - i t er into the defined language. Then,
using the instrumented interpreter of the previous exercise, compute (f act 4) and(fact-iter

4) . Compare them to the calculations at the beginning of thischapter. Find (* 4 (* 3 (* 2
(fact 1)))) inthetraceof (f act 4).Whatisthe continuation of appl y- pr ocval for this
cdlof (fact 1)2

Exercise 7.11 [ *] The instrumentation of the preceding exercise produces voluminous output. Modify the
instrumentation to track instead only the size of the largest continuation used during the calculation. We
measure the size of a continuation by the number of continuation-builders employed in its construction, so the

size of the largest continuation in the calculation on page 250 is 4. Then calculate the values of f act and
fact-iter appliedto several operands. Confirm that the size of the largest continuation used by f act
grows linearly with its argument, but the size of the largest continuation used by f act - i t er isaconstant.

Exercise 7.12 [ *] Our continuation data type contains just the single constant, hal t - cont , and al the
other continuation-builders have a single continuation argument. |mplement continuations by representing
them aslists, where ( hal t - cont ) isrepresented by the empty list, and each other continuation is
represented by a non-empty list whose car contains a distinctive data structure (called frame or activation
record) and whose cdr contains the embedded continuation. Observe that the interpreter treats these lists like a
stack (of frames).

Exercise 7.13 [ * *] Extend the continuation-passing interpreter to the language of figure 3.24. Pass a
continuation argument to execut e- st at enent , and make sure that no call toexecut e-
st at enment occursin aposition that grows a control context.



(define eval -program (Ilanbda (pgm (cases program pgm (a-

program ( body) (eval - expression body (init-env) (halt-cont))))))
(define eval -

expression (lanbda (exp env cont) (cases expression exp (rit-
exp (datum (apply-cont cont datum) (var-exp (id) (apply-

cont cont (apply-env env id))) (proc-exp (ids body) (appl y-
cont cont (closure ids body env))) (letrec-exp (proc-

nanes i dss bodies |etrec-body) (eval -expression letrec-

body (extend-env-recursively proc-

nanes i dss bodi es env) cont)) (if-exp (test-exp true-

exp fal se-exp) (eval - expression test-exp env (test-
cont true-exp fal se-exp env cont))) (primapp-

exp (primrands) (eval -rands rands env (prinargs-

cont primcont))) (let-exp (ids rands body) (eval -

rands rands env (let-exp-cont ids env body cont))) (app-
exp (rator rands) (eval -expression rator env (eval -rator-
cont rands env cont))) )))

Figure 7.7 Continuation-passing interpreter (part 1)

Since a statement does not return a value, distinguish between ordinary continuations and continuations for
statements; the latter are usually called command continuations. The interface should include a procedure

appl y- command- cont that takes acommand continuation and invokes it. Implement command
continuations both as data structures and as 0-argument procedures.

One might now be tempted to transcribe the interpreter into an ordinary procedural language,
using a data structure representation of continuations to avoid the need for higher-order
procedures. Most procedural languages,



(define eval -rands (lanbda (rands env cont) (if (null? rands) (appl y-

cont cont ' ()) (eval -expression (car rands) env (eval -first-cont rands env cont)))))
(define apply-

procval (lanbda (proc args cont) (cases procval proc (cl osure (ids body env) (eval -
expressi on body (extend-env ids args env) cont)))))

Figure 7.8 Continuation-passing interpreter (part 2)

however, make it difficult to do this translation: instead of growing control context only when necessary, they add to the
control context (the stack!) on every procedure call. Since the procedure callsin our system never return until the very end of
the computation, the stack in these systems continues to grow until that time.

This behavior is not entirely irrational: in such languages ailmost every procedure call occurs on the right-hand side of an
assignment statement, so that almost every procedure call must grow the control context already. Hence the architectureis
optimized for this most common case. Furthermore, most languages store environment information on the stack, so every
procedure call must generate a control context that remembers to remove the environment information from the stack.

In such languages, one solution isto use a technique called trampolining. To avoid having an unbounded chain of procedure
calls, we break the chain by having one of the procedures in the interpreter actually return a O-argument procedure. This
procedure, when called, will continue the computation. The entire computation is driven by a procedure called atrampoline
that bounces from one procedure to the next. (See figure 7.10.)

Each 0-argument procedure returned by appl y- cont represents athread of the computation; we shall seein section 7.5 how
thisidea can be used to simulate multithreaded programs.



(appl y-cont (test-cont true-exp fal se-exp env cont) val) = (if (true-

val ue? val) (eval - expressi on true-exp env cont) (eval - expression false-
exp env cont)) (apply-cont (primargs-

cont primcont) val) = (let ((args val)) (appl y-cont cont (apply-

primtive primargs cont))) (apply-cont (let-exp-

cont ids env body cont) val) = (let ((newenv (extend-

env ids val env))) (eval - expressi on body newenv cont)) (apply-cont (eval -
rator-cont rands env cont) val) = (let ((proc val)) (eval -

rands rands env (eval -rands-cont proc cont))) (apply-cont (eval-rands-

cont proc cont) val) = (let ((args val)) (if (procval ? proc) (appl y-
procval proc args cont) (eopl :error 'eval -

expressi on "Attenpt to apply non-

procedure ~s" proc)))) (apply-cont (eval-first-

cont rands env cont) val) = (eval-rands (cdr rands) env (eval -rest-

cont val cont)) (apply-cont (eval-rest-cont first-val cont) val) = (apply-

cont cont (cons first-val val))

Figure 7.9 Specification of continuations for figure 7.7

Exercise 7.14 [ * * *] Finish implementing the trampolining interpreter. How does this computation terminate?
Devise away for the interpreter to finish cleanly.

Exercise7.15[*] The(| anbda () (cases ...)) inappl y-cont andthe( proc) in
t r anmpol i ne constitute a procedural representation of threads. Replace this by a data structure representation.



(define tranpoline (lanbda (proc) (tranpoline (proc)))) (define apply-
cont (lanbda (cont val)| (lambda () (cases continuation cont o))

Figure 7.10 Procedural representation of trampolining

Exercise 7.16 [ * *] Implement atrampolining interpreter in an ordinary procedural language. Use a data structure
representation of threads, asin the preceding exercise, and replace the recursive call tot r anpol i ne initsown
body by an ordinary Whi | € or other looping construct.

Exercise 7.17 [ * * *] One could also attempt to transcribe the environment-passing interpreters of chapter 3in an
ordinary procedural language. Such atranscription would fail in all but the simplest cases, for the same reasons as
suggested above. Can the technique of trampolining be used in this situation as well?

7.2 Procedural Representation of Continuations.

It can be difficult to follow the workings of the continuation-passing interpreter because the specification
of the continuations is separate from the clauses of the interpreter to which they are associated. This
difficulty can be alleviated by using a procedural representation of continuations, and expanding the
continuation-builders and appl y- cont where they occur.

A procedural implementation of the continuation interface is shown in figures 7.11-7.12. Here we have
implemented the interface in a most straightforward way, so that every continuation usesval asits
bound variable.

Now we can substitute these definitions into the interpreter of figures 7.7—7.8. When we do this, we will
also replace expressionslike (1 anbda (val) (let ((args val)) ...)) by(lanbda
(args) ...).Theresultisshowninfigures7.13-7.14. Thisinterpreter is more readable than the
preceding ones. we can read the final lines of eval - pr ogr amas: "Apply eval - expr essi on to
exp with theinitial environment, call the result val ,



(define apply-cont (lanbda (cont v) (cont v)))(define halt-

cont (lanmbda () (lanbda (val) (begin (wite val) (newine)))))

(define test-cont (lanbda (true-exp fal se-

exp env cont) (lambda (val) (if (true-value? val) (eval -
expressi on true-exp env cont) (eval -expression fal se-exp env cont)))))
(define varassign-

cont (lanbda (env id cont) (l ambda (val) (begin (setref! (apply-
env-ref env id) val) (apply-cont cont 1)))))(define primargs-

cont (lambda (primcont) (lanbda (val) (let ((args val)) (appl y-
cont cont (apply-primtive primargs))))))(define |et-exp-

cont (lanbda (ids env body cont) (lambda (val) (let ((newenv (extend-
env ids val env))) (eval - expressi on body newenv cont)))))

Figure 7.11 Procedural implementation of continuations (part 1)




(define eval -rator-cont (lanbda (rands env cont) (I anbda (val) (let ((proc val)) (eval -

rands rands env (eval -rands-cont proc cont)))))) (define eval -rands-

cont (lanbda (proc cont) (lanmbda (val) (let ((args val)) (if (procval ? proc) (appl y-
procval proc args cont) (eopl :error 'eval - expression "Attenpt to apply non-

procedure ~s" proc))))))(define eval-first-cont (lanmbda (rands env cont) (l anbda (val) (eval -

rands (cdr rands) env (eval -rest-cont val cont)))))(define eval-rest-cont (lanbda (first-

val cont) (l anbda (val) (let ((rest val)) (appl y-cont cont (cons first-val rest))))))

Figure 7.12 Procedural implementation of continuations (part 2)

and then print it." Similarly, the code for eval - r ands,

(define eval -rands (lanbda (rands env cont) (if (null? rands) (cont '()) (eval -
expression (car rands) env (lambda (first-val) (eval -
rands (cdr rands) env (I anbda (rest) (cont (cons first-val rest)))))))))



can beread as. "if r ands isempty, return the empty list. Otherwise, evaluate the first expression
and call theresultf i r st - val . Then evaluate the second expression and call the result r est .
Thenreturntheconsof fi rst-val andrest."

Using a procedural representation makes the program easier to read, and also allows the
programmer more freedom to include additional continuation-builders. We shall see in chapter 8
how thisidea can be used to convert any program to continuation-passing style. A disadvantage of
the procedural representation isthat it is harder to debug, since procedures are usually unprintable.

Exercise 7.18 [ * *] Transform the state-passing interpreter of exercise 3.48 into continuation-passing style.
The continuations should take two arguments: the expressed value and the state, so one might write:

(define eval -

expression (lanmbda (exp env store cont) (cases expression exp (var-
exp (id) (cont (apply-store store (apply-

env env id)) store)) (varassi gn-exp (id rhs-exp) (eval -
expression rhs-exp env store (lambda (val new

store) (cont 1 (extend-store (apply-

env env id) val store))))) (if-exp (test-exp true-exp fal se-

exp) (eval -expression test-exp env store (lambda (val new
store) (if (true-value? val) (eval - expression true-
exp newstore cont) (eval -expression fal se-exp new

store cont))))) .0)))

7.3 An Imperative Interpreter

In section 3.7, we saw how assignment to shared variables could sometimes be used in place of
binding. Consider the familiar example of even and odd at the top of figure 7.15. It could be
replaced by the program below it in figure 7.15. There the shared variable x allows
communication between the two procedures. In the top example, the procedure bodies ook for the
relevant data in the environment; in the other program, they look for it in the store.



(define eval -program (lanbda (pgm (cases program pgm (a-

program (exp) (eval -expression exp (init-

env) (lanmbda (val) (begin (wite val) (newine))))))))(define eval -
expression (lanbda (exp env cont) (cases expression exp (lit-

exp (datun) (cont datum) (var-exp (id) (cont (apply-env env id))) (proc-

exp (ids body) (cont (closure ids body env))) (letrec-exp (proc-

nanes i dss bodies |etrec-body) (eval - expression | etrec-body (ext end- env-
recursively proc-nanes idss bodi es env) cont)) (if-exp (test-exp true-

exp fal se-exp) (eval - expression test-

exp env (lanbda (val) (if (true-value? val) (eval -
expressi on true-exp env cont) (eval -expression fal se-

exp env cont))))) (varassi gn-exp (id exp) (eval -

expressi on exp env (lanbda (val) (begin (setref! (apply-
env-ref env id) val) (cont 1)))))

Figure 7.13 Continuation-passing interpreter with higher-order continuations inlined (part 1)

Consider atrace of the computation at the bottom of figure 7.15. This could be atrace of either computation. It
could be atrace of the first computation, in which we keep track of the procedure being called and its argument, or
it could be atrace of the second, in which we keep track of the procedure being called and the contents of the
register x.



(primapp-exp (primrands) (eval -

rands rands env (I anbda (args) (cont (apply-primtive primargs))))) (let-
exp (ids rands body) (eval -rands rands env (I anbda (val s) (let ((new
env (extend-env ids vals env))) (eval - expressi on body newenv cont))))) (app-
exp (rator rands) (eval -expression rator env (lanbda (proc) (eval -

rands rands env (lambda (args) (if (procval ? proc) (appl y-
procval proc args cont) (eopl:error 'eval -

expression "Attenpt to apply non-

procedure ~s" proc))))))) ))) (define eval -

rands (lanmbda (rands env cont) (if (null? rands) (cont '()) (eval -

expression (car rands) env (lambda (first-val) (eval -

rands (cdr rands) env (lambda (rest) (cont (cons first-val rest)))))))))
(define apply-

procval (lambda (proc args cont) (cases procval proc (closure (ids body env) (eval -
expressi on body (extend-env ids args env) cont)))))

Figure 7.14 Continuation-passing interpreter with higher-order continuationsinlined (part 2)




letrec even(x) =if zero?(x) then 1 el se (odd subl(x)) odd

(x) =1if zero?(x) then O el se (even subl(x))in (odd 13)

let x = 0in letrec even() = if zero?

(x) then 1 else let d = set x = subl

(x) in (odd) odd() =if zero?

(x) then 0 else let d = set x = subl

(x) in (even) inlet d =set x =13 in (odd) x = 13; got o odd;
even: if (x=0) then return(l) else {x = x-1; goto odd;}
odd: if (x=0) then return(0) el se {x = x-

1; goto even;} (odd 13)= (even 12)= (odd 11)...= (odd 1)= (even 0)
=1

Figure 7.15 Three programs with a common trace




Y et athird interpretation of this trace would be as the trace of gotos (called aflowchart program),
in which we keep track of the location of the program counter and the contents of the register x.

But this works only because in the original code the callsto even and odd do not grow any
control context: they are tail calls. We could not carry out this transformation for f act , because
thetrace of f act grows unboundedly: the "program counter" appears not at the outside of the
trace, asit does here, but inside a control context.

We can carry out this transformation for any procedure that does not require control context. This
leads us to an important principle:

A procedure call that does not grow control context isthe sasmeasajump.
Such a procedure call issaid to be atail call.

If agroup of procedures call each other only by tail calls, then we can trandate the calls to use
assignment instead of binding, and we can translate such an assignment program into a flowchart
program.

In this section, we shall use this principle to trans ate the continuation-passing interpreter into a
form suitable for transcription into alanguage without higher-order procedures.

We begin with the interpreter of figures 7.7—7.8, using a data structure representation of
continuations. The data structure representation is shown in figures 7.16 and 7.17.

Our first task isto list the procedures that will communicate via shared registers. These
procedures, with their formal parameters, are:

(eval - expressi on exp env cont)(eval -rands rands env cont) (appl y-
procval proc args cont) (apply-cont cont val)

So we will need seven global registers. exp, env, cont, rands, proc, args,and

val . Each of these procedures will be replaced by a O-argument procedure, and each call to one of
these procedures will be replaced by code that stores the value of each actual parameter in the
corresponding register and then invokes the new 0-argument procedure. So the fragment



(define-datatype continuation continuation? (halt-cont) (test-cont (true-

exp expression?) (fal se-

exp expression?) (env environment ?) (cont continuation?)) (varassign-

cont (env environment ?) (id synbol ?) (cont continuation?))) (primargs-

cont (primprimtive?) (cont continuation?)) (Iet-exp-cont (ids (list-

of synbol ?)) (env environnent ?) (body expression?) (cont continuation?)) (eval-
rator-cont (rands (list-

of expression?)) (env environment ?) (cont continuation?)) (eval-rands-

cont (proc expval ?) (cont continuation?)) (eval-first-cont (exps (list-

of expression?)) (env environment ?) (cont continuation?)) (eval-rest-

cont (first-val ue expval ?) (cont continuation?)) )

Figure 7.16 Data structure implementation of continuations (part 1)




(define apply-cont (lanbda (cont val) (cases continuation cont (halt-

cont () (begin (wite val) (newine))) (test-cont (true-exp fal se-

exp env cont) (if (true-value? val) (eval - expression true-

exp env cont) (eval -expression fal se-exp env cont))) (varassi gn-

cont (env id cont) (begin (setref! (apply-env-

ref env id) val) (appl y-cont cont 1))) (primargs-

cont (primcont) (let ((args val)) (appl y-cont cont (apply-

primtive primargs)))) (let-exp-cont (ids env body cont) (let ((new

env (extend-env ids val env))) (eval - expressi on body newenv cont))) (eval -
rator-cont (rands env cont) (let ((proc val)) (eval -

rands rands env (eval -rands-cont proc cont)))) (eval -rands-

cont (proc cont) (let ((args val)) (if (procval ? proc) (appl y-
procval proc args cont) (eopl:error 'eval -

expressi on "Attenpt to apply non-procedure ~s" proc)))) (eval -first-
cont (exps env cont) (eval -rands (cdr exps) env (eval -rest-

cont val cont))) (eval -rest -

cont (first cont) (let ((rest val)) (appl y-

cont cont (cons first rest)))) )))

Figure 7.17 Data structure implementation of continuations (part 2)




(define eval -

expression (lanbda (exp env cont) (cases expression exp (lit-
exp (datum (appl y-cont cont datunj) o))

can be replaced by
(define eval -expression (lanbda () (cases expression exp (lit-
exp (datum (set! cont cont) (set! val datum (appl y-
cont)) o))

We can now systematically go through each of our four procedures and perform this
transformation. We will also have to transform the body of eval - pr ogr am since that is where
eval - expr essi onisinitialy called. There are just three complications:

1. Often aregister is unchanged from one procedure invocation to another. Thisyields an
assignment like (set! cont cont) inthe example above. We can safely omit such
assignments.

2. When afield name of a data type happens to be the same as a register name, the field shadows
the register, so the register becomes inaccessible. For example, in eval - pr ogr amwe have

(cases program pgm (a- program (exp) (eval -
expression exp (init-env) (halt-cont))))

Here exp islocally bound, so we cannot assign to the global register exp. The solution isto
rename the local variable to avoid the conflict:

(cases program pgm (a- program (expl) (eval -
expression expl (init-env) (halt-cont))))



Then we can write

(cases program pgm (a-
program (expl) (set! exp expl) (set! env (init-
env)) (set! cont (halt-cont)) (eval - expression)))

These rebindings occur primarily in appl y- cont , where we often use env and cont asfield
names. There are atotal of 14 bound variables that need to be renamed in their scopes. 13 in
appl y- cont andoneineval - pr ogram

3. Thereis an additional complication that might arise in such atrandation, though it does not
occur in our example. Consider transformingacall (f (+ x y) x),wherex andy arethe
formal parametersof f . A naive transformation of this call would be:

(begin (set! x (+ xy)) (set! y x) (f))

But thisisincorrect, because it loads the register y with the new value of x, when the old value of
X was intended. The solution is either to reorder the assignments so the right values are loaded into
the registers, or to use temporary variables. Sometimes temporary variables are unavoidabl e
consider (f y Xx) wherex andy aretheformal parametersof f .

The result of performing this translation on our interpreter is shown in figures 7.18-7.21. This
processis called registerization. It is an easy process to trand ate this into an imperative language.

Exercise 7.19 [ *] Instrument this interpreter asin exercise 7.9. Since continuations are represented the same
way, reuse that code. Verify that the imperative interpreter of this section generates exactly the same traces as
the interpreter in exercise 7.9.

Exercise 7.20 [ * *] Modify the interpreter of this section so that procedures use dynamic binding, asin
exercise 3.30. (Hint: do this by transforming the interpreter of exercise 3.30 aswe did in this chapter; it will
differ from the interpreter of this section only for those portions of the original interpreter that are different.)
Instrument the interpreter asin exercise 7.19. Observe that just as there is only one continuation in



(define exp ‘uninitialized)(define env "uninitialized)
(define cont ‘'wuninitialized)(define rands 'uninitialized)

(define val "uninitialized)(define proc 'uninitialized)

(define args ‘'wuninitialized)(define eval-

program (Il anmbda (pgm (cases program pgm (a-

program (expl) (set! exp expl) (set! env (init-

env)) (set! cont (halt-cont)) (eval -expression)))))
(define eval -expression (lanbda () (cases expression exp (lit-
exp (datum (set! val datum (appl y-cont)) (var -

exp (id) (set! val (apply-env env id)) (appl y-

cont)) (proc-

exp (ids body) (set! val (closure ids body env)) (appl y-
cont)) (letrec-exp (proc-nanes idss bodies |etrec-

body) (set! exp |etrec-body) (set! env (ext end- env-
recursively proc-nanes idss bodies env)) (eval - expression))

Figure 7.18 Imperative interpreter (part 1)




(if-exp (test-exp true-exp fal se-exp) (set! exp test-

exp) (set! cont (test-cont true-exp fal se-exp env cont)) (eval -
expressi on)) (varassign-exp (id rhs-exp) (set! exp rhs-

exp) (set! cont (varassign-cont env id cont)) (eval -

expression)) (primapp-exp (primrandsl) (set! cont (primargs-

cont primcont)) (set! rands randsl) (eval -rands)) (let-

exp (ids randsl body) (set! rands randsl) (set! cont (Ilet-exp-
cont ids env body cont)) (eval -rands)) (app-

exp (rator rands) (set! exp rator) (set! cont (eval -rator-

cont rands env cont)) (eval - expression)) ))) (define eval -

rands (Il anbda () (if (null? rands) (begin (set! val '()) (appl y-
cont)) (begin (set! exp (car rands)) (set! cont (eval-first-
cont rands env cont)) (eval -expression)))))

Figure 7.19 Imperative interpreter (part 2)

the state, there is only one environment that is pushed and popped, and furthermore, it is pushed and popped in parallel with
the continuation. We can conclude that dynamic bindings have dynamic extent: that is, abinding to aformal parameter lasts
exactly until that procedure returns. Thisis different from lexical bindings, which can persist indefinitely if they wind up in
aclosure.



(define apply-cont (lanbda () (cases continuation cont (hal t-

cont () (begin (wite val) (newline))) (test-cont (true-exp fal se-exp ol d-

env ol d-cont) (if (true-

val ue? val) (begin (set! exp true-

exp) (set! env ol d-env) (set! cont ol d-

cont) (eval - expression)) (begin (set! exp fal se-
exp) (set! env ol d-env) (set! cont ol d-

cont) (eval -expression)))) (varassign-cont (old-env id ol d-

cont) (begin (setref! (apply-env-ref ol d-

env id) val) (set! cont ol d-cont) (set! val 1) (appl y-
cont))) (primargs-cont (primold-

cont) (let ((args val)) (set! cont ol d-

cont) (set! val (apply-primtive primargs)) (appl y-

cont))) (let-exp-cont (ids old-env body ol d-cont) (let ((new

env (extend-env ids val old-env))) (set! exp body) (set! env new
env) (set! cont ol d-cont) (eval - expression))) (eval -rator-
cont (randsl ol d-env ol d-

cont) (let ((proc val)) (set! rands randsl) (set! env ol d-
env) (set! cont (eval -rands-cont proc ol d-cont)) (eval -rands)))

Figure 7.20 Imperative interpreter (part 3)




(eval -rands-cont (ol d-proc old-cont) (let ((new

args val)) (if (procval ? ol d-

proc) (begin (set! proc old-

proc) (set! args new args) (set! cont ol d-
cont) (appl y-procval)) (eopl:error 'eval-
expressi on "Attenmpt to apply non-

procedure ~s" proc)))) (eval -first-cont (old-rands ol d-env ol d-
cont) (set! rands (cdr old-rands)) (set! env ol d-

env) (set! cont (eval-rest-cont val old-cont)) (eval -
rands)) (eval -rest-cont (first-val ol d-

cont) (let ((rest val)) (set! cont ol d-

cont) (set! val (cons first-val rest)) (appl y-
cont))) ))) (define apply-

procval (lanbda () (cases procval proc (closure (ids body ol d-
env) (set! exp body) (set! env (extend-env ids args ol d-
env)) (eval -expression)))))

Figure 7.21 Imperative interpreter (part 4)

Exercise 7.21 [ *] Eliminate the remaining | €t expressionsin this code by using additional global registers.

Exercise 7.22 [ * *] Trandlate the interpreter of this section into an imperative language. Do this twice: once
using 0-argument procedure callsin the host language, and once replacing each 0-argument procedure call by a

got 0. How do these alternatives perform as the computation gets longer?



Exercise 7.23 [ * *] As noted on page 260, most imperative languages make it difficult to do this tranglation,
because they use the stack for all procedure calls, even tail calls. Furthermore, for large interpreters, the pieces
of code linked by gOt O's may be too large for some compilers to handle. Translate the interpreter of this
section into an imperative language, circumventing this difficulty by using the technique of trampolining, asin
exercise 7.14.

7.4 Exceptions and Control Flow

So far we have used continuations only to manage the ordinary flow of control in our languages.
But continuations allow us to alter the control context as well. Let us consider adding exception
handling to our defined language. We add to the language two new productions:

{expression) = try (expression) handle (expression)
try-exp (body-exp handler-exp)

(expression) = raise (expression)
raise-exp [(exp)

A try expression first evaluates its second expression (which should evaluate to a procedure of
one argument). It installs this value as an exception handler and then evaluates itsfirst expression.
If this expression returns normally, its value becomes the value of the entiret r y expression, and
the exception handler is removed.

A r ai se expression evaluates its single expression and raises an exception with that value. The
value is sent to the most-recently installed exception handler. It isthe job of the handler to
determine what to do with this exceptional condition. It can either return a value, which becomes
the value of the associated t r y expression, or it can propagate the exception by raising another
exception; in this case the exception would be sent to the next most recently installed exception
handler.

Thisisless complicated than it sounds. Let us consider aversion of | i st - i ndex written in our
defined language. The defined-language procedurei ndex is given anumber and alist of
numbers, and should return the position of the first occurrence of that number in thelist, or -1 if it
does not occur. We can write this as:



letrec index(n, I) = if null?2(l) t hen subl1(0) el se if equal ?(n, car

(1)) then 0 else let p = (index n cdr
(1)) inif equal ?(p,subl(0)) t hen subl
(0) el se addl(p)in ..

This code is awkward because we need to check the value for -1 at every level. Thismight be
manageable in this example, but would be error-prone if there had been many places wherei ndex was
called. We can avoid this testing by raising an exception when the list becomes empty:

index = proc (n, |I) letrec loop(l) =if null?
then rai se subl(0) el se if equal ?(n, car
then 0 el se addl1((l oop cdr

e
I
1))

1))) intry (loop 1) handle proc (x) xin ..

| et
(1)
(r)
(1)
If the end of thelist isfound, an exception with value -1 israised and is passed to the most-recently
installed exception handler, in this case pr oc (x) X, so -1 isreturned as the value of the call toi ndex.
If thecall tol oop returns normally, then we know that the desired element was found, so we can

safely add 1 to it to find the right answer. In this way, we avoid the repetitious and error-prone manual
testing for -1.

Implementing this exception-handling mechanism using the continuation-passing interpreter is
straightforward. We begin with thet r y expression. We add two new continuation-builders:

(handl er -
cont (body expression?) (env environnent ?) (cont continuation?)) (try-
cont (handl er expval ?) (cont continuation?))



and we add to eval - expr essi on thefollowing clausefortry:

(try-exp (body-exp handl er-exp) (eval -
expressi on handl er-exp env (handl er-cont body-exp env cont)))

and to the specification of continuations the equation

(appl y-cont (handl er-cont body-exp env cont) handl er-

val) = (if (procval ? handl er-val) (eval - expressi on body-
exp env (try-cont handl er-val cont)) (eopl :error 'eval-
expr essi on "Error handler not a procedure: ~s" handler-val))

Now, what happens when the body of thet r y expression is evaluated? If the body returns
normally, then that value should be sent to the continuation of thet r y expression, in this case
cont :

(apply-cont (try-cont handler cont) val) = (apply-cont cont val)

What happens if an exception is raised? Then we need to search through the continuation for the
nearest handler, which may be found in thetopmost t r y- cont continuation. Soineval -
expr essi on wewrite

(raise-exp (exp) (eval - expressi on exp env (raise-
cont cont)))

and in the specification of continuations we write
(apply-cont (raise-cont cont) val) = (find-handl er val cont)

wheref i nd- handl er isaprocedure that finds the closest exception handler and applies it
(figure 7.22).

To show how all thisfits together, let us consider a calculation using a defined language
implementation of i ndex.



(define find-handler (lanbda (val cont) (cases continuation cont (try-

cont (handl er cont) (appl y-procval handler (list val) cont)) (hal t-
cont () (eopl :error 'find-

handl er "Uncaught exception ~s" val)) (test-cont (true-exp false-
exp env cont) (find-handl er val cont)) (primargs-

cont (primcont) (find-handl er val cont)) o))

Figure7.22 The procedure f i nd- handl er

Let expO denote the expression

let index = proc (n, |) letrec loop (1) =if null?

(1) then raise subl

(0) el se if equal ?(n, car

(1) then O el se addl
((loop cdr(1))) intry (loop 1) handle proc (x) xin (index 1 list
(2,3))

let expl denote the body of the procedurei ndex, and let exp2 denote the body of the local procedure
| oop. Aswe did above, we write «exp» to denote the abstract syntax tree associated with the expression
exp, and we write [x=a, y=Db] envin place of (ext end-env ' (x y) '(ab)env).

We start expO0 in an arbitrary environment env0 and an arbitrary continuation cont 0. We will show only
the highlights of the calculation, with comments interspersed. In particular, we will not show the evaluation
of the actual parameters to procedure calls, nor will we show the evaluation of conditionals.



(eval - expressi on exp0 env0 cont 0) = execute the body of thel et ( eval -
expression <<(index 1 list (2,3))>> envl cont0) whereenvl =
[index = (closure (n 1) expl env0)] env0= evaluatethebody of i ndex( eval -
expression expl [n=1,1=(2 3)]envl cont0)=thebodyof indexisal etrec- -
evaluate the body of the | et r ec ina suitably extended environment( eval - expr essi on
<<try (loop 1) handle proc (x) x>> env2 cont0) whereenv2 = [l oop=
(closure (1) exp2 env2)] envl=evaluatethehandler, yielding a closure, then
evaluatethebody of thet ry inatry-cont continuation( eval - expr essi on <<(loop 1)
>> env2 (try-cont (closure (x) <<x>> env2) cont0)) = evaluatethe body of
| oop with| boundto (2 3)( eval - expression exp2 [1=(2 3)]env2 (try-cont
(closure (x) <<x>> env2) cont0)) = evaluate the conditional, getting to the recursion
ling( eval - expressi on <<addl((loop cdr(l)))>> [1=(2 3)]env2 (try-
cont (closure (x) <<x>> env2) contO0)) = evaluatetheargumenttoaddl(eval -
expression <<(loop cdr(l))>> [1=(2 3)]env2 (primargs-cont
<<addl>> (try-cont (closure (x) <<x>> env2) contQ0))) = evaluatethe
body of | oop with 1 boundto ( 3) (eval - expressi on exp2 [1=(3)]env2 (prim
ar gs-cont <<addil>> (try-cont (closure (x) <<x>> env2) cont0)))=
evaluate the conditional, getting to the recursion line again( eval - expr essi on <<addl
((loop cdr(l)))>> [1=(3)]env2 (try-cont (closure (x) <<x>> env2)
cont 0) ) = evaluate the argument to add1( eval - expressi on <<(loop cdr (1))

>> [1=(3)] env2 (primargs-cont <<addl>> (try-

cont (closure (x) <<x>> env2) cont0)))

= evaluate the body of | oop with 1 boundto () (eval - expressi on exp2 [ 1=

()] env2 (primargs-cont <<addl>> (primargs-

cont <<addl>> (try-cont (closure (x) <<x>> env2) cont0))))



= evaluatether ai se expression( eval - expressi on <<rai se subl1(0)>> [ 1=

()] env2 (primargs-cont <<addl>> (primargs-

cont <<addl>> (try-cont (closure (x) <<x>> env2) cont0))))=
usef i nd- handl er to unwind the continuation until we find a handler( f i nd- handl er -

1 (primargs-cont <<addl>> (primargs-cont <<addil>> (try-
cont (closure (x) <<x>> env2) cont0))))=(find-handler -1 (prim
args-cont <<addil>> (try-cont (closure (x) <<x>> env2) cont0)))=
(find-handler -1 (try-cont (closure (x) <<x>> env2) cont0))

= we've found a handler, now apply it( appl y-

procval (closure (x) <<x>> env2) '(-1) cont0)=runthebody of the procedure
(eval -expressi on <<x>> [x=-1] env2 cont0)

= send the value of x to the continuation( appl y-cont cont0 -1)

If the list had contained the desired element, then we would have called appl y- cont instead of
fi nd- handl er, and we would have executed all the «<add1»'sin the continuation.

Exercise 7.24 [ * *] Thisimplementation is inefficient, because when an exception israised, f i nd-

handl er must search linearly through the continuation to find a handler. Avoid this search by representing
the continuation as a pair, consisting of anormal continuation and an exception continuation. Then appl y-
cont invokesthe normal continuation, and f i Nd- handl er invokes the exception continuation.

Exercise 7.25 [ *] An dternative design that also avoids the linear searchinf i nd- handl er istouse
two continuations, a normal continuation and an exception continuation. Achieve thisgoal by modifying the
interpreter of this section to take two continuations instead of one.

Exercise 7.26 [ *] Modify the defined language to raise an exception when a procedure is called with the
wrong number of arguments.

Exercise 7.27 [ *] Modify the defined language to add division as a primitive. Raise an exception on division
by zero.



Exercise 7.28 [ *#] Theinterpreter of this section seems to depend on the data structure representation, since we have two
observers that examine the structure of the continuation. Re-implement the interpreter of this section using a procedural
representation of continuations.

Exercise 7.29 [ * *] So far, an exception handler can propagate the exception by reraising it, or it can return a value that becomes
the value of thet I y expression. One might instead design the language to allow the computation to resume from the point at
which the exception was raised. Modify the interpreter of this section to accomplish this by running the body of the handler in the
continuation from the point at which ther ai Se was invoked.

Exercise 7.30 [ * * *] Give the exception handlers in the defined language the ability to either return or resume. Do this by
passing the continuation from the I ai S€ exception as a second argument. This may require adding continuations as a new kind
of expressed value. Devise suitable syntax for invoking a continuation on a value.

Exercise 7.31 [ * *] The preceding exercise captures the continuation only when an exception is raised. Add to the language the
ability to capture a continuation anywhere by adding theform | et cC <identifier>i n <expression> with the specification

(eval -expression (letcc id exp) env cont)= (eval -expressi on exp (ext end-
env (list id) (list cont) env) cont)

Such a captured continuation may be invoked with t hr OW: the expressiont hr 0w <expression>t 0 <expression> evaluates
the two subexpressions. The second expression should return a continuation, which is applied to the value of the first expression.
The current continuation of thet hr Owexpression isignored.

Devise a suitable method to invoke such a captured continuation.

Exercise 7.32 [* *] An dternativeto | €t cC andt hr owof the preceding exerciseis to add a single primitive procedure to
the language. This procedure, which in Schemeiscaledcal | - wi t h- current - cont i nuat i on, tekesa1-
argument procedure, P, and passes to P a procedure that when invoked with one argument, passes that argument to the current
continuation, cont . Wecould definecal | -wi t h-current -conti nuati onintermsof | et cc andt hr ow
asfollows:

let call-with-current-
conti nuation = proc (p) | etcc cont in (p proc (v) throwv to cont)
in ...

Addcal | -wi t h-current-conti nuati on asaprimitive. Then write atrangator that takes the language with
| et cc andt hr owand translatesit into the language without | et cc andt hr ow, but withcal | - wi t h- curr ent -
conti nuati on.



7.5 Multithreading

In many programming tasks, one may wish to have multiple computations proceeding at once. When these computations are run in the
same address space as part of the same process, they are usually called threads. Threads are sometimes called lightweight processes. In
this section, we will see how to modify our interpreter to simulate multi-threaded programs by interleaving the steps of their executions.

To do this, we build on the trampolining interpreter of section 7.1. Rather than having a single thread of computation, our multi-
threaded interpreter will maintain several threads. The threads that are not currently running will be kept on a queue called the ready
queue.

A thread is a computation in progress. There will be two kinds of threads: runnable threads and completed threads. We choose to
represent runnable threads as 0-argument procedures, and completed threads as symbols. The basic constructor on threadsis make-

t hr ead, which builds a runnable thread. Since we are using a procedural representation, make- t hr ead isthe identity procedure.
There are two observers on threads. The procedure r un- t hr ead takes a nonnegative integer and a thread; it runs the thread for that
number of steps, and returns the resulting thread. If the thread becomes non-runnable before the clock runs out, then the resulting non-
runnable thread is returned. We will count each bounce of the trampoline as one step. The procedurer un-t hr ead is much like

t ranpol i ne, except that it maintains a counter. We will also need the tester r unnabl e? that checksto seeif athread is runnable.

(define make-thread (|l anmbda (proc) proc))(define run-
thread (lanbda (ticks thread) (i f (runnabl e? thread) (if (zero? ticks) thread (run-
thread (- ticks 1) (thread))) thread))) (define runnabl e? procedure?)

Threads are scheduled for execution by a scheduler. The scheduler takes a number and a thread. The number specifies the number of
stepsin atimedlice. If thethread isrunnable, it is placed on the ready queue. A thread is then fetched from the ready queue and run,
usingr un-t hr ead, for afull



time slice. The resulting thread is then scheduled. The procedure schedul e is called with a non-runnable thread only
when there are no more threads to run. In this case, the scheduler halts:

(define schedule (lanbda (quantumthread) (if (runnabl e? thread) (begin (pl ace-
on-ready- queue t hread) (schedul e quantum (run-thread quantum (get-next-from
ready- queue)))) thread)))

The ready queueis agloba data structure with three operations:
» Theprocedurei ni ti al i ze-r eady- queue, which initializes the queue to empty.
» The procedure pl ace- on-r eady- queue, which places arunnable thread on the ready queue.

» The procedure get - next - f rom r eady- queue, a0-argument procedure that removes a thread from the ready
gueue and returnsiit. If the ready queue is empty, then the symbol done! , a non-runnable thread, is returned.

We create the ready queue using the queue interface of section 2.4.

(define the-ready-queue (create-queue))(define initialize-ready-queue (queue-get-reset-
operation the-ready-queue))(define place-on-ready-queue (queue-get-enqueue-operation the-
ready- queue) ) (defi ne get-next-fromready-queue (let ((enpty? (queue-get-enpty?-operation the-
r eady- queue)) (dequeue (queue- get - dequeue- operati on the-ready-

queue))) (lanbda () (if (enpty?) the-final-answer (dequeue)))))

Now, how do we use this scheduler with our defined language?

» We need to start the program by creating and scheduling an initial thread:



(define eval -program (lambda (quant um pgn (initialize-

r eady- queue) (cases program pgm (a-

program (exp) (schedul e quantum (make-

t hr ead (larmbda () (eval -

expressi on exp (init-env) (hal t-

cont)))))))))
We start programs by using the procedurer un- wi t h- quant um

(define run-w th-quantum (lambda (quantum stri ng) (eval -
program quantum (scan&parse string))))

 Asin the trampolining interpreter, we modify appl y- cont to return athread rather than
actually applying the continuation:

(define apply-cont
{lambda {cont wal)
| (make-thread
[ (lambda ()
(cases continuation cont
S ERRE

» We add a new production,
{expression) = spawn (expression)

to our grammar. Executing aspawn expression causes a new thread to be created and placed on
the ready queue, so its evaluation proceeds concurrently with the current thread. The new thread
evaluates the subexpression in the current environment. But in what continuation should this
subexpression be evaluated? We choose to evaluate the subexpression in a continuation that when
executed simply allowsits thread to die. Even though the new thread cannot return avalue to its
parent, it can communicate with its parent via shared variables. Hence we writein eval -

expr essi on:



(spawn-

exp (exp) (begin (pl ace-on-ready-

queue (make-

t hr ead (lambda () (eval -
expression exp env (die-cont))))) (apply-cont cont 1)))

A spawn expression returns immediately with 1 asits value, signifying successful creation of the
thread.

The continuation ( di e- cont ) should ignore the value sent to it and allow its thread to die by
simply getting the next thread from the ready queue and returning it:

(appl y-cont (die-cont) val) = (get-next-fromready-queue)

Thisthread is returned to the trampoline, so it takes over the remainder of the current thread's time
dlice. In this specification, we haveignored the (make-t hread (lanbda () ...)) thatis
wrapped around the body of appl y- cont .

» What should happen when the initial continuation ( hal t - cont ) isexecuted? Unlike ( di e-
cont), (halt-cont) should print ananswer, asit did before. But there may be other threads
waiting to execute afterwards. So ( hal t - cont ) should print out its answer and then die,
allowing the remaining threads to execute by calling ( get - next - f r om r eady- queue) .
This leads to the following specification:

(apply-cont (halt-cont) val) = (begin (eop
printf "final answer is: ~a~% val) (get-next-fromready-queue))

Here we have added a distinctive label to this outcome to help distinguish it from the output of
other threads.

Figure 7.23 shows some programs using threads in our defined language. The first two programs
illustrate how threads can communicate via shared variables. The program pgnb- 1 spawns a
thread that setsthe variable acc to 20. The main thread then enters a busy-waiting loop that waits
foracc to



become non-zero, and returnsits value. The program pgnb- 2 sets up athree-stage pipeline, in
which the first thread puts 20 in buf 1, the second waits for buf 1 to fill, adds 2 to the result, and
puts the resulting value in buf 2. The third thread similarly waits for buf 2 to fill, adds 2 to the
result, and puts the resulting value in buf 3. The body of the program waits for buf 3 to fill and
reports the answer. Last, the program pgnb- 3 illustrates the interleaving of different threads. The
procedure noi sy recurs linearly down alist, printing out the list at each step. The output of
running these programsis shown in figure 7.24. In the final example, why does the computation
continue well after the main thread has finished?

Exercise 7.33 [ *] How does the behavior of pgb- 3 change as the time slice changes?
Exercise 7.34 [ *] Add to the defined language a construction di € that kills the current thread.

Exercise 7.35 [ * *] Add to the defined language a construction yi el d that causes the current thread to
yield the remainder of itstime slice.

Exercise 7.36 [ *] Instead of representing athread as a O-argument procedure, represent it as a data structure
containing the same 0-argument procedure. Then modify r un- t hr ead to check to see that its argument is
alegal thread.

Exercise 7.37 [ * *] Replace the procedural representation of threads with a data structure representation.

Exercise 7.38 [* * *] Inappl y- cont ,move ( make-t hread (lanbda () ...)) insde
theCases and replace the procedural representation with a data structure representation with a separate

constructor for each instance of mak e- t hr ead. What are the trade-offs between this representation and
the one in the preceding exercise?

Exercise 7.39 [ *# * *] Modify the thread package to include thread identifiers. To do this, change the
grammar of Spawn expressions to be

\expression) n= spawn ({identifier}) ({expression)

Each new thread gets a fresh number (its thread identifier). When the child thread is spawned, it receivesits
number as the binding of the identifier. The child's number is returned to the parent as the value of the
Spawn expression. Instrument the interpreter to trace the creation of thread identifiers. Check to see that the
ready queue contains at most one thread for each thread identifier. What should be done about the thread
identifier of the original program?

Exercise 7.40 [ * *] Add to the interpreter of the preceding exerciseaki | | facility. Theki | | construct,
when given athread number, finds the corresponding thread on the ready queue and removesit. In addition,
Ki | | should return 1 if the target thread is found and O if the thread number is not found on the ready queue.



et acc = 0 done = 0in et d = spawn set acc = 20 in letrec Toop () =it acc then let d = set done = 1 in acc el'se (100p) in (1oop)
Program pgrs- 1
let buf1 =0 buf2 = 0 buf3 = Oin let di = spawn set bufl = 20 42 = spawn letre loop () = if buit then set but2 = +(buf1,2) el'se (100p) in (1oop) 43 = spawn letrec Toop () = if but2 then set butd = +(buf2,2) el'se (100p) in (loop) inletrec 1oop ()
Program pgns- 2
letrec noisy (1) = in it nali2(1) then 0 el'se (noisy car(1))in let di = spawn (noisy 115((1,2.3,4.5)) spawn (noi sy 1151(6,7,8,9,10)) 43 = spawn (noisy 1151(11,12,13,14,15,16,17))  in 33
(Qure 7.23 Some programs using threecs

i buf3 then buf3 else (1oop) in (1oop)
Program prs- 3




> (run-with-quantum 50 pgnb-1)final answer is: 20done!> (run-with-
quantum 50 pgnb-2)final answer is: 24done!> (run-w th-quantum 50 pgnb- 3)
final answer is: 33(1 2 3 45)(2345) (6789 10)(7 8 9 10)

(11 12 13 14 15 16 17)(12 13 14 15 16 17)(3 4 5)(4 5)(5)(8 9 10)(9 10)(10)
(13 14 15 16 17)(14 15 16 17)(15 16 17)()() (16 17)(17)()done!

Figure 7.24 Sample output from thread programs

Shared variables are an unreliable method of communication if several threadstry to write to the
same variable. Consider the program in figure 7.25. Two threads each try to increment the same
variable twice. The main loop waits for both of the threadsd1 and d2 to finish. But if athread
switch occurs between reading and writing the variable, unpredictable behavior can result.

Exercise 7.41 [ *] If we vary the size of the time dlice, how many different results can this program produce?



let x = list(0) donel = 0 done2 = 0in let dl1 = spawn begin setcar (x, addl(car

(x))); setcar(x, addl(car(x))); print(list(1,car

(x))); set donel =1 end d2 = spawn begin set car
(x, addl(car(x))); setcar(x, addl(car(x))); print(list(2,car

(x))); set done2 =1 end inletrec loop () = if equal?

(donel, 1) then if equal ?(done2, 1) then print(list(O,car

(x))) el se (1oop) el se (I oop) in (loop)

Figure 7.25 Shared variable example with two threads: unreliable

There are many ways to design a better synchronization facility for threads. A simple oneis locks, which has the following interface.
| ock <expression>: evaluates the expression and creates alock containing the resulting value. The value of the expression is the lock.

e acqui r e <expression>: evaluates the expression, which should return alock. If no other thread has acquired the lock, then the current
thread acquires the lock and the expression returns the value held in the lock. Otherwise, the thread waits until the lock isfree.

*r el ease <expression>: evaluates the expression, which should return alock. It releases the lock and returns 1.

We implement the lock as a data structure containing an integer-valued cell (as in exercise 2.26), indicating whether the lock is occupied,
and avalue:



(define-datatype |l ock | ock? (a-
| ock (occupi ed (lanbda (x) (and (cell? x) (integer? (contents x))))) (val ue expval ?)))

We add three clausesto eval - expr essi on, while extending the set of expressed values to include locks.

(1 ock-exp (exp) (eval - expressi on exp env (l ock-cont cont))) (acquire-
exp (exp) (eval - expressi on exp env (acqui re-cont cont))) (rel ease-
exp (exp) (eval - expressi on exp env (rel ease-cont cont)))

In addition, we add three clausesto appl y- cont and we extend the associated data type of continuations accordingly. (See figure
7.26.)

For | ock, we construct a new lock containing a cell initialized to zero, indicating that the lock is unoccupied, and the locked value.

For acqui r e, we check that the value passed to it isalock; if it is, we check to see whether it is aready occupied. If itis
unoccupied, then we mark it as occupied by setting itsoccupi ed cel | to 1, and wereturn its value to the continuation cont 1 of
theacqui r e. If it is occupied, we place the current thread on the ready queue (by calling (appl y- cont cont val ), which
returns athread), and call get - next - f r om r eady- queue to get the next runnable thread. In this way the current thread will
repeatedly try the lock until it is unoccupied. Since this code iswithin asingle call to appl y- cont , it will be executed without
interruption, so no race condition can occur.

Last, for ar el ease, we check to see whether the lock is occupied; if it is, we release it by setting itsoccupi ed cell to 0. Itisan
error to attempt to release alock that is not occupied.

Figure 7.27 is the same program as figure 7.25, using a lock to synchronize access to the shared list cell. Thistime the final value of
thelistis(4), regardless of the length of the time slice.

Exercise 7.42 [ * *] The algorithm used for ac qui I € iscalled aspin lock. This can be wasteful if the lock may be held for along time, because the
waiting thread will continually retry the lock. Avoid this by associating a queue of waiting threads with



(define apply-cont (lanbda (cont val) (make-t hread (I anbda () (cases continuation cont (I ock-

cont (cont) (let ((c (cell 0))) (apply-cont cont (a-lock c val)))) (acquire-

cont (contl) (if (lock? val) (cases | ock val (a-

I ock (occupied val ue) (if (= (contents occupied) 0) (begin (setcell occupied 1) (appl y-
cont contl val ue)) (begin (pl ace-on-ready- queue (appl y-cont cont val)) (get - next -
fromready-queue))))) (eopl :error 'acquire-cont "Non-1lock to acquire: ~s~% Vv))) (rel ease-

cont (cont) (if (lock? val) (cases lock val (a-

| ock (occupied val ue) (if (= (contents occupied) 1) (begin (setcell occupied 0) (appl y-
cont cont 1)) (eopl:error 'rel ease-cont "Must acquire lock before releasing")))) (eopl:error 'rel ease-

cont "Non-lock to rel ease: ~s~% v))) o))

Figure7.261 ock, rel ease,andacquire




let 1 = lock list(0) done = 0in let t1 = spawmn let ¢ = acquire 1 in begin setcar(c, addl(car(c))); set car

(c, addl(car(c))); print(list(1,car(c))); set done = addl

(done); rel ease 1 end t2 = spawn let ¢ = acquire 1 in begin setcar(c, addl(car

(c))); setcar(c, addl(car(c))); print(list(2,car(c))); set done = addl

(done); rel ease 1 end inlet v=20 inletrec loop() =if equal?

(done, 2) then let ¢ = acquire 1 in begin set v = car

(c); rel ease 1; \ end el se (1oop) in (loop)

Figure 7.27 Shared variable example with two threads: reliable

each lock. (Thisis sometimes called a sleep queue). If athread attempts to acquire an occupied lock, it places itself on the queue for that lock. When alock is released, it wakes up the first thread on its queue.
Exercise 7.43 [ * * *] Our codefor I €| ease isinsecure, because a thread could release alock owned by another thread. Use the mechanism of thread identifiersto guarantee that r €l ease can only release alock held by the current thread.

Exercise 7.44 [ *] In most languages, constructionslike| ock, acqui r e, andr el ease take the form of operating system calls. Rewrite the interpreter to make these constructions primitives, rather than syntactic constructions.



Exercise 7.45 [ *] Before threads came into widespread use, some programming languages had coroutinesto
accomplish similar goals on a single processor. A coroutine is like a procedure, except that when it transfers
control to another coroutine, it keeps track of its current continuation. Control leaves one continuation and

enters another using the operation r €S UNe, which takes two arguments: a coroutine, to which it transfers
control, and a value to be passed to that coroutine.

A coroutine may be implemented as a cell that contains a continuation. Initially, that continuation should

execute the body of the coroutine (in some suitable initial continuation, as we did for threads). In this model,
after ther @SUNe operation evaluates its arguments, it saves the current continuation in its own coroutine's
cell. It then extracts the continuation from the target coroutine's cell, and sends the value to that continuation.

The effect isthat the value appears as the result of the r €S une by which the target coroutine relinquished
control.

Implement this model of coroutines.

7.6 Logic Programming

We normally think of append as a procedure that takes two lists and returns the concatenation of
the two lists. But, we can aso think about the problem this way: given the resultant list and the
first list, what should the second list be? If we are also not given the first list, what two lists could
be passed to append to make the resultant list? Problems like this are some of the motivations for
logic programming. In this section, we explore a rudimentary implementation of logic
programming. Our implementation uses continuation-passing style to organize the control
structure of the program.

In logic programming, we start with alist of goals to be solved. The goals are solved by reducing
them using aglobal set of rules. A ruleisdefined to be alist of theform (h<--t1. .. tn), whereh,
t1, ..., thnareterms (exercise 2.13). The hiscaled the head term and thet1 . . . tn are called the
subgoal terms. The rule says that one way to find a solution of the head histo find a solution for
the subgoalsty, . . ., tn.

For example, here are the rulesfor append.

(("append" "empty" x X) <--)(("append” ("cons" w x) y ("cons" w z))
<-- ("append” x y z))

Thefirst rule may be read as saying that " append" appliedto " enpt y" and any value x returns
that value x. The second rule saysthat if " append" applied to some values x and y returns z, then
"append" appliedto (" cons" wx) andyreturns (" cons” w z). Using the terminology of



subgoals, we can read these rules as saying that any goal of the form (" append" "enpt y" xX) isimmediately solved,
and that any goal of theform (" append” (" cons” wx)y (" cons” w 2)) may be solved by solving (" append” xy 2).

For these rules, some sample goal terms might be

("append" ("cons" 1 ("cons" 2 "enpty")) y ("cons" 1 ("cons" 2 ("cons" 3 ("cons" 4 "enmpty")))))
and

("append” x y ("cons" 1 ("cons" 2 ("cons" 3 ("cons" 4 "enpty")))))

Thefirst goa determinesthat y mustbe (" cons” 3 ("cons" 4 "enpty")), but the second goal is satisfied by
five different sets of valuesfor x andy.

The interpreter evaluates a goal term by comparing it to the head of each rule. If the goal unifies (exercise 2.25) with the
head term of arule, then the unifying substitution is applied to each of the subgoals (if any) of the rule, and the resulting
terms are added as goals to be evaluated. We keep track of the substitutions as they are applied; if eventually all the
subgoals are satisfied, then the resulting substitution is said to be a solution of the original goal.

When we try to evaluate a subgoal that does not match the head of any rule, we say that the subgoal hasfailed. In this
situation, the interpreter backtracks to the last application of arule, and tries the next applicable rule instead. Backtracking
isdone in a stack-like fashion: the last rule applied is aways the first to be undone. Upon backtracking, the computation
revertsto an earlier substitution.

For example, consider the following set of rules:

(("p" x) <-- ("g" x) ("r" x))(("p" x) <-- ("s" x))(("q" 1) <--)(("r" 2) <--)(("s" 3) <--)
andthegoa term (" p" x) . Theinterpreter would try thefirst rule, giving the subgoals (" q" x) and("r" Xx).The
first of these would succeed, yielding the value 1 for x. The second subgoal would then fail, since thereisno rule

applicableto ("r" 1) . Hencethe system must backtrack to the application of the first rule, and try the second rule
instead. The second rule would



find the subgoal (" s" x), which would then succeed, yielding a substitution that associates the
X inthe goa termto 3.

In order to organize this control structure, we use two continuations: a success continuation that
records what to do when a unification step succeeds, and a failure continuation that keeps track of
what to try next at each potential backtrack point. Each new failure continuation represents a new
backtrack point and closes over the substitution with which to continue the computation.

A failure does not return anything to its failure continuation, so we model failure continuations as
O-argument procedures. A success continuation takes two arguments:. a solution (a substitution)
and afailure continuation that gives access to more results.

The procedure sol ve-t er ns takes asits argument alist of goals (with possibly one element, as
in our examples). It callsmat ch- t er s with the list of goals, an empty substitution, an initial
success continuation, and an initial failure continuation. If it succeeds, the success continuation
applies the substitution to the initial list of goals and unparses the result for readability.

(define solve-terns (lanbda (goals) (match-terns goals (enpty-
subst) (I ambda (subst fail ure-fk) (unparse-terns (subst-in-
terns goal s subst))) (lambda () #f))))

The procedure mat ch-t er ns and its auxiliary procedures arein figure 7.28. Its arguments are a
list of goalsto be satisfied, a substitution, a success continuation, and a failure continuation. It
attempts to satisfy each of the goals. If there are no goalsto satisfy, then it passes to its success
continuation the current substitution and the current failure continuation. Otherwise, it calls

mat ch-t er mto try to solve thefirst goal. It passesto mat ch- t er ma continuation that
specifies that if the first goal can be solved with a substitution new subst , then the computation
should continue by solving the rest of the goals, using the new substitution. This sequence of goals
corresponds to alogical conjunction ("and") of the goals. The continued computation uses the
failure continuation new- f k so that the next failure will backtrack to the chronologically last
backtrack point.

The procedure nmat ch- t er mattemptsto solve asingle term by invoking mat ch-ter m

agai nst - r ul e for each rule. The failure continuation passed along to it ensures that on failure,
we continue searching the rest of the rules. The rules are kept in the global variablet he- r ul es.
If no matching ruleis



(define match-

ternms (|l anbda (goal s subst sk fk) (if (null? goals) (sk subst fKk) (mat ch-
term (car goals) subst (lanmbda (new- subst new-fk) (mat ch-

terns (cdr goal s) new subst sk newfKk)) fk))))(define match-

term (lambda (goal subst sk fk) (let loop ((rules the-

rul es)) (if (null? rules) (fk) (rmat ch-t er m agai nst -

rule goal (car rules) subst sk (lanbda () (loop (cdr rules))))))))
(define match-term agai nst -

rule (lanbda (goal rule subst sk fk) (let ((instantiated-

rule (instantiate rule))) (let ((head (rul e->head instanti ated-

rule)) (subgoal s (rul e->subgoal s instantiated-rule))) (let ((new
subst (unify-term (subst-in-

term head subst) (subst-in-termgoal subst)))) (if (not new
subst) (fk) (match-terms subgoal s (conpose-

substs subst new subst) sk fk)))))))

Figure 7.28 Procedures for logic programming

found, we report failure by invoking the failure continuation. Such aloop in the failure continuation represents a
logical disjunction ("or"): if one thing doesn't work, we try the next one.

Finaly, mat ch- t er m agai nst - r ul e matchesaterm against asingle rule. It first creates a fresh instance
of therule, renaming all of the variablesin the rule with fresh variables. It then applies the current substitution
to the



goal term and the head of the freshly instantiated rule, and attempts to unify them. If thisfails,
then the failure continuation is invoked, which will try the next rule. Otherwise, the resulting
substitution is added to the current substitution, and the procedure callsmat ch- t er s to solve
the subgoals.

We seethat mat ch-t er ns iscaled from two places. sol ve-terns andmat ch-term

agai nst - rul e. Sincethefirst argument to mat ch- t er s from withinmat ch-term

agai nst - r ul e isalist of instantiated subgoals, we treat the argument to sol ve-t er ns inthe
same fashion.

Exercise 7.46 [ *] Implement the procedure i NSt ant i at e, which takesarule as an argument and
replaces each variable's identifier by aunique identifier. If two identifiers are the same, they should be
replaced by the same unique identifier. Each time arule isinstantiated, its unique identifiers must change.

Why? One way to create unique identifiersisto define avariant of f r esh- i d (exercise 2.11) for terms that

keeps track of every unique identifier generated. Another way would be to use g€NsSYy m which is available
on most Scheme implementations.

Exercise 7.47 [ *] Implement a set of rulesfor even- | engt h suchthat (" even- 1 engt h" x)
succeedsif and only if x isalist of even length. Represent lists asin the append example of this section.
Hint: consider the mutually-recursive definition of even and 0dd of section 3.6.

Exercise 7.48 [ * *] Implement aversion of SOl ve-t er s that produces afinite list of results, not just

thefirst one. Then, test SOl ve-t er ms with theappend rules on each of the two sample goal terms.
Finally, implement and test an improvement to this interface when the number of results is unbounded.

Exercise 7.49 [ *#] Design a concrete syntax for logic programming, and modify this interpreter to useiit.

Exercise 7.50 [ *] Include (f ai | S t) asanew kind of subgoal term. If t succeeds, then the term fails. If t
fails, then the term succeeds and continues with the substitution that existed prior to the interpretation of the
failstem.

Exercise 7.51 [ *#] One modification that is often used in logic programming languages is to require each rule
head to be an app term whose first term is a string constant, called a functor. Redefinean app- t €r mto be
asymbol (corresponding to the functor) and alist of terms (corresponding to the rest of the terms), to take
advantage of this modification. Thisimprovesmat ch- t er m since the functor symbol can also be used as
akey to find the appropriate set of rulesin aglobal table. Implement these ideas.

Exercise 7.52 [* *] Thec Ut operator inlogic programming is a mechanism for reducing the amount of
search that occurs. In alanguage that supports CUt and the modification of the preceding exercise, the global
set of rulesis divided into subsets, whose heads all have the same functor symbol and the same number of
subterms. For example, the rulesfor " append” might be one such subset. A cut isaspecia subgoal that
always succeeds. If it is backtracked into, however, it abandons not just



the rulein which it occurs, but the entire subset in which the rule appears. Consider the example above, with
thetwo" p" rulesin the same subset. Then if thereisacut between (" Q" X) and("r" X),thegoa
termfails, since ( (" p" X) <-- ("s" X)) would not betried. Treat the argument to SOl ve-

t er ms asan aready instantiated headless rule, thus placing it into its own subset. Extend thet €r mdata
typetoinclude cut - t er mand implement cut .

Exercise 7.53 [ *] It is possible to remove the occurs check inuni f y- t er mDoing this requires the
programmer to ensure that no unsound unifying substitutions will occur, but it has been the standard in most
logic languages. Implement this modification.

Exercise 7.54 [ * * *] Consider the modifications made in exercises 7.51 and 7.53. Give some example
programs that can be written with the unmodified version that cannot be written with the modified version?

Exercise 7.55 [ * *] Add terms of theform (i St r ue e)and (i S te), wheretisany term and eisan
expression consisting of constants, variable references and primitive applications. Include numeric valued
primitives asiin section 3.1 and exercise 3.11. The expressions must be evaluated in the substitution (treated as

an environment) by a separate interpreter. Ani St r ue term succeeds if its expression's value is true and
fails otherwise. Ani S term unifies its subterm with the value of its expression.

Exercise 7.56 [ * ®* %] A substitution that fails the occurs check could be regarded as introducing arecursive
association, somewhat like the way bindings are built to implement | €t r eC expressions. Implement an
extension of unification that takes advantage of this observation and as such does not include the occurs check.

Further Reading

(Reynolds, 1993) gives afascinating history of the several independent discoveries of
continuations and the CPS transform. (Strachey & Wadsworth, 1974; 2000) is probably the most
influential of these. (Reynolds, 1972; 1998) transforms a metacircular interpreter into CPS and
shows how this avoids some of the problems of metacircularity. The tranglation of programsin tail
form to imperative form dates back to (McCarthy, 1962).

(Wand, 1980a; 1999) introduces the use of continuations as a model for lightweight processes or
threads. Continuations may also be used for avariety of purposes beyond those discussed in the
text, such as coroutines (Haynes, Friedman, & Wand, 1986) and program transformations (Wand,
1980b). (Clocksin & Méllish, 1994) is a standard text on logic programming. The two-
continuation model used here was introduced in (Federhen, 1980).

The efficient implementation of continuationsistreated in (Hieb, Dybvig, & Bruggeman, 1990)
and (Clinger, Hartheimer, & Ost, 1999). (Clinger, 1998) discusses some of the subtleties of tail
recursion.



8 Continuation-Passing Style

In chapter 7, we took an interpreter and rewrote it so that all of the major procedure calls were tail
calls. By doing so, we guaranteed that the interpreter built up at most a bounded amount of control
context, no matter how large or complex a program it was called upon to interpret. This property is
called iterative control behavior.

We achieved this goal by passing an extra parameter, the continuation, to each procedure. This
style of programming is called continuation-passing style, and it is not restricted to interpreters.

Of course, there is no completely general way of determining whether the control behavior of a
procedure is iterative or not. Consider

(lambda (n) (if (strange-predicate? n) (fact n) (fact-iter n)))

This procedureisiterative only if st r ange- pr edi cat e? returnsfalse for all sufficiently large
values of n. But it is not always possible to determine the truth or falsity of this condition, even if
it were possible to examine the code of st r ange- pr edi cat e?. Therefore the best we can
hope for is to make sure that no procedure call in the program will build up control context,
whether or not it is actually executed.

In this chapter we develop a systematic method for transforming any procedure into an equivalent
procedure that has iterative control behavior. Thisis accomplished by converting it into
continuation-passing style.



8.1 Taill Form

Our goal isto identify the class of expressions in which no procedure call isin a position that
requires control context to be built. We will say that such expressions arein tail form,

Recall our principle from chapter 7:

It isevaluation of actual parameters, not the calling of procedures, that requirescreating a
control context.

Thusin
(define fact (lanbda (n) (if (zero? n) 1 (* n (fact (- n 1))))))

it isthe position of the call to f act asan operand that requires the creation of a control context.
By contrast, in

(define fact-iter (lanbda (n) (fact-iter-acc n 1)))(define fact-iter-
acc (lanbda (n a) (if (zero? n) a (fact-iter-acc (- n1l) (* n a)))))

none of the procedure calls are in operand position. We say these calls are tail calls because their
value isthe result of the whole call.

Our goal in this section isto define formally the notion of atail-form expression. In order to do
this we need to identify two things:

» We identify those places where evaluation of an expression would not require a control context
to be generated. We call these the tail positions of the language, and we say that procedure callsin
these positions are tail calls.

» We identify a syntactic class of expressions that are guaranteed not to execute any procedure
calls. We say such expressions are simple.

We will eventually say that an expressionisin tail form if every subexpression in non-tail position
issimple. Since simple expressions contain no procedure calls, this means that procedure calls can
occur only in tail position, and therefore do not build any control context.



{program) = (expression)
(expression) = (number)

{expression) == (identifier)

{expression) = (primop) ({{expression)}-/)

{expression) == if (expression) then (expression) else {(expression)
{expression) = let {{identifier} = {expression}}' in {expression}

{expression) == proc ({{identifier)}'"* ') {expression)
{expression) 1= ({expression) {{expression}}')
{expression) == letree {{identifier) ({(identifier}}*'+') = (expression}}’

in {expression})

Figure 8.1 Grammar for source language

But first we need to make all of this precise. We use the language of section 3.6, whose grammar
issummarized in figure 8.1.

For each expression of this language, we can classify its immediate subexpressions into two
classes:

* A subexpression in head position is one that must be evaluated, could be evaluated first, and is
evaluated in the environment of the entire expression. An expression may have more than one
head position because our interpreter does not, for example, specify the order of evaluation of the
actual parameters of a procedure.

* A subexpression in tail position has the property that if it is evaluated, its value immediately
becomes the value of the entire expression. For procedures defined by pr oc or| et r ec, the
meaning of this criterion is explained below. For a subexpression in tail position, no information
need be saved, and therefore no control context need be built. An expression may have more than
onetail position because, for example, our i f expressions may choose either the true or the false
branch.

We show these positions for the language of figure 8.1 in figure 8.2. Head positions are indicated
by H and tail positions by T.

Wejustify the entriesin thisfigure as follows. Literals and variables are not listed, because they
have no subexpressions. In a conditional, thetest is



{primop) (H,..., H)

if Hthen T else T

let {(identifier) « H}' in T

proc ({{identifier)}*'*y T

(HH ... H)

letrec {({identifier) ({(identifier)}"*}) =T} inT

Figure 8.2 Head (H) and tail (T) positionsin the source language

always evaluated first, so it isin head position. When one of the branches of a conditional is
evauated, its value becomes the value of the entire conditional, so the branches are both in tail
position. Inal et expression, each of the right-hand sides must be evaluated, so they are all in
head position; the value of the body becomes the value of the entire expression, so it isin tail
position. In apr oc, the body isin taill position because its value will become the value of the
application when it isinvoked. In a procedure application, al of the subexpressions must be
evaluated, so they are in head position. None of them isin tail position, because after they are all
evaluated the procedure body is executed. In| et r ec declarations, the bodies arein tail position
asthey arefor apr oc expression, and thel et r ec body isintail position.

In an expression, every subexpression except the entire expression appears as an immediate
subexpression of some other subexpression. We can therefore classify every subexpression by
whether it appearsin ahead position or atail position of itsimmediate parent expression. For
example, consideri f zero? (x) then (f x) else (g (h y)).Herezero? (x)
appearsin head position,and (f x) and(g (h y)) appear intail position. The expressions
f, g, (h y),andbothoccurrencesof x occur in head position. The expressionsh andy also
occur in head position.

Exercise 8.1 *] For each expression, underline al of the subexpressions that appear in head position.
1.if (g x) then (f addl(b)) else (b (c x))
2.proc(u)(f if (g x) then (g (hy)) else u)
3.(f if zero?(x) then (g (h 3)) else (g 4))
4.(f if zero?(x) then 3 else 4 if (p x) then 3 else 4)

5.let x =3y = (fact 4) in (p x b)



Exercise 8.2 [ *] Write atable like the one above showing head and tail positions for the fragment of the
Scheme language used in the interpreter of section 3.6. Treat thecases formasanested | f . Now, when a
subexpression in tail position of the defined language is evaluated, the corresponding call to eval -

expr essi on will also bein tail position.

Exercise 8.3 [* *] If the language included S et , would the right-hand side of the assignment be in head
position, tail position, both, or neither?

Exercise 8.4 [ * *] Add to the language a construct that has some subexpressions that are in neither head nor
tail position according to our criteria. Invent a construct with a subexpression that isin both head and tail
position.

Exercise 8.5 [ * *] Extend the CPS transformation to handle| et i nor der x1=elx2=¢e2i n 3. Here

the scope of x1 is €2 and €3, and the scope of x2 ise3, likethe| et * of Scheme. Observe that €2 is neither in
head nor tail position. Thiswill require anew rule.

We now turn to the definition of those expressions that can never cause a procedure call. These are
the simple expressions. We define these inductively:

Definition 8.1.1 The simple expressions are defined as follows:

* Aliteral or avariable referenceis always simple.

A primitive application issimpleif and only if all of its operands are simple.

* A conditional expression issimple if and only if all three of its subexpressions are simple.

* Al et expressionissimpleif and only if all of its subexpressions are simple.

* Apr oc expression is always simple.

* Al etrec expressonissimpleif and only if its body is simple.

* A procedure application is never simple.

The intent of this definition is that the evaluation of a simple expression is just a short sequence of
primitive operations, possibly with some closure creations and tests. Closure creation and

| et r ec aretreated in this category because they are simple data structure operations. Because
the body of a closure is not evaluated when the closure is constructed, its body need not be simple,
but all other subexpressions of asimple expression must be ssimple.

Exercise 8.6 [ *] Draw arectangle around every non-simple expression in exercise 8.1 that occursin head
position.



Exercise 8.7 [ *] Write a Scheme procedure Si Mpl €7? that takes an abstract syntax tree for the defined
language and tests whether it is simple.

Exercise 8.8[*] WriteSi NPl e? (see previous exercise) for the language of Scheme expressions of
exercise 8.2.

We can now give the key definition:

Definition 8.1.2 A tail-form expression is one in which every subexpression in non-tail positionis
simple.

In this definition, the phrase "every subexpression” means not just the immediate subexpressions,
but all subexpressions. So in atail-form expression, the non-tail positions contain simple
expressionsthat are also in tail form, and the tail positions contain tail-form expressions. This
leads us to the grammar for tail-form expressions shown in figure 8.3. We say "non-tail position”
because in some languages there may be subexpressions that are in neither head nor tail position.

Expressions may bein tail form but not simple, or simple but not in tail form. For example,

add1(x) simple tail form
if p then x else add1(add1(x)) simple tail form
(f +(x,y)) not smple tail form
add1((f x)) not smple not tail form
if pthen x else (f sub1(x)) not smple tail form
if (f X) then x else (f sub1(x)) not smple not tail form
proc(x) (f x) simple tail form
proc(x) add1((f x))) simple not tail form

These examples also demonstrate that not every tail-form expression isin continuation-passing
style: the tail-form expressions in this table have no obvious continuations, nor could they be
generated by the CPS algorithm in this chapter, but they are neverthelessin tail form.

Because we know that when an application in tail position is evaluated, no control information
need be stored, and because in atail-form expression al procedure applications are in tail position,
we conclude:

Tail form impliesiterative control behavior.

If an expression isin tail form, and any procedures accessible through variable bindings are also in
tail form, then the expression will execute with iterative control behavior.



(tf-program} == (tf-exp)

(tf-exp) = {tf-simple-exp)

(tf-exp) m=if (tf-simple-exp} then (tf-exp) else (tf-exp)

(tf-exp) n= let {{identifier) = (tf-simple-exp)}* in (tf-exp)

(tf-exp) n= ((tf-simple-exp) {({tf-simple-exp)}*)

(tf-exp) u= letrec {(identifier) ({(identifier}}*+") = (tf-exp}}"
in (tf-exp)

(th-simple-exp) ::= (number})

(tf-simple-exp) ::= (identifier)

(tf-simple-exp) ::= (primop) ({{tf-simple-exp)}'+")

(tf-simple-exp) = if (tf-simple-exp)

then (tf-simple-exp)
else (tf-simple-exp}
(th-simple-exp) 1= let {{identifier) = (tf-simple-exp}}’
in (tf-simple-exp)
(th-simple-exp) i:= prec ({{identifier}}"'") (tf-exp}
(th-simple-exp) 1= letree {{identifier) ({{identifier}}'"") = (tf-exp)}’
in (tf-simple-exp)

but NOT:

(t-simple-exp) = ((tf-exp) {({tlexp}}*)
because an application is never simple.

Figure 8.3 Grammar for tail-form expressions

As an example, consider an instance of the factorial procedure in our defined language:

letrec fact (n) = if zero? (n) then 1 el se *(n, (fact subl(n)))
in (fact 4)

Thisisnot in tail form, because the recursive call tof act occursin an operand position. If we
givef act anadditional continuation argument, then we can rewrite this programin tail form as



letrec fact(n, k) = if zero?(n) then (k 1) el se (fact subl
(n) proc(val)(k *(n,val)))in (fact 4 proc(val)val)

Here we have used a procedural representation of continuations. If n is0, then (f act n k)
sends 1, thevalue of 0!, to k. If n isnonzero, then (f act n k) computes (n - 1)!, callsthe

valueval , and sendsthevalueof *(n, val ), namely nx (n-21)! =n! tok, asdesired.

In the next section, we shall see how to convert any program in our defined language into tail form
by using continuation-passing style.

Exercise 8.9 [ *] Determine whether each of the following expressions is simple and whether it isin tail form.
1.add1l((f subl(x)))
2.(f addi(*(x,y)))

3.if zero?(x) then +(x,y) else addl(-(x,Yy))

4.1 et Xx proc(y) (y X) in +(x,3)

5 let f

proc(x)x in (f 3)

Exercise 8.10 [ * *] Write a Scheme proceduret ai | - f or nf? that takes a program in the language of
figure 8.1 and determines whether or not it isin tail form, by checking the abstract syntax tree of the program
against the grammar of figure 8.3.

Exercise 8.11 [ * *] Write agrammar similar to that of figure 8.3 for the subset of Scheme consisting of the
following forms: variable, literal, primitive application, application, i f, cond, | anbda, | et and
| et r ec. Make reasonable assumptions about what constitutes a primitive application. Write a procedure to
test whether an expression in Scheme, according to this grammar, isin tail form.

8.2 Converting to Continuation-Passing Style.

In this section we develop a set of rules for transforming any program in our defined language into
an equivalent program in tail form. We do this by transforming the program into continuation-
passing style.

The continuation-passing interpreter of chapter 7 suggests how a CPS transformation might be

accomplished. The CPS transformation changes the procedure-calling convention so that every
procedure takes an extra argument: the continuation to which the answer should be passed. It is
then



possible to transform every expression so that only simple expressions occur in non-tail positions.

Since our defined language does not have data structures like those built by def i ne-
dat at ype, we will use the procedural representation of continuations throughout.

The transformation is accomplished by three operations:

1. Thefirst operation, denoted {-} , transforms a whole program into a procedure that accepts a
continuation and then performs a calculation. The intention isthat if P isthe whole program, then (

{F} proc(val ) val ) should return the same answer as P.

2. The second operation, denoted , takes a ssimple expression and transforms it by modifying
each procedure occurring in the expression. Each procedure is transformed by adding an extra
formal parameter k and by transforming the body so that instead of simply returning avalue, it
passes the same value to the continuation k. The transformation of the body is accomplished by
the third operation.

3. Thethird operation is denoted I=1*0~1_|f E isan expression and K is asimple expression,
then LED*IET will be atail-form expression that sends the value of E to the continuation K.

This operation is the heart of the CPS transformation.

Starting with these informal specifications, we can now describe these operations in more detail.

1. The transformation on programs can be written as

:_F} pI k [lf[llﬂ-:ﬂ {(Cogm)

where k isafresh variable that does not appear in E. MET e [x1 is atail-form expression that sends

m -

I . . . . . .
the value of Etok, so =™ ¥ will be a tail-form expression that, given a continuation, sends the
value of E to that continuation, as desired.

2. The transformation rule for proceduresis
proc (Xy,...,Xg) [ pro | R, P . ﬂl!.l]lﬂif." (Comx)

where k isafresh variable. The transformed procedure takes an extra continuation argument, and
its body is atail-form expression that sends the value of E to the continuation k.



3. Any simple expression other than a procedure is transformed by applying the preceding rule to
each procedure that occurs within it, including those that appear in| et r ec expressions.

Now all we need to do isto define LEN* [T overall thiswill be done by a case analysis on
whether E and its subexpressions are ssimple. A subsidiary analysis is sometimes done on the form

of K. There are five rules that define LEN* I we will state these rules as clearly aswecanin
prose; we make them more precise when we get to the implementation of the transformation in

section 8.4. The algorithm =1+ I-1 aways terminates, because whenever 1ET*[K]
recursively invokes the algorithm, the left-hand argument is smaller than E.

1. If the expression E is simple and the continuation K is a variable k, then
HEDoDk] = ok ((E (C simpie.par)

Thisruleis reasonable, because instead of returning the value of the expression E, it passes that
valueto k, as desired. For example,

[xlelx] k((x
I+ x.y) Belx] e (+
Ioroc . y) (£ x y)lelxl = (k (proc(x,y) (£ x
x proc(x,y, k) [(£ x y)]e[x]

In the first example, the value of x isreturned to k. In the second example, the sum of x andy is
computed and returned to k. In the last example, we are asked to return a procedure, so the

procedure is transformed using " and returned to k. Of course, the last exampleisn't finished
yet, because we have not yet written down enough rules to figure out what expression is denoted

by[] f x ¥ ]]'JI."-I]_

2. If the expression E is simple and the continuation K isapr oc expression, then applying Csimple-
var would lead to an expression in which the procedure is applied to an argument. In this case we
usetherule

[IEJelproc o) Th=1let v = ({(E}} in T | IR



Thel et expression isequivaent to the expression that would have been generated by Csimple-var
but is easier to read. For example,

I]i:":'. X |]-[[_:':' ok v i] ddl (x) in (k v

which isintail form. Thisrule will only be needed when processing expressionssuch asi f or
| et.

3. It may be that E is non-simple, but has no non-simple subexpressions. In our language, the only
way this can happen iswhen E isaprocedure application (S . . . &), where each of the S is
simple. In that case, what should happen? S in the original program denoted a procedure of n
arguments; in the transformed program it denotes a procedure of n+1 arguments that computes the
same thing the old procedure did, but sends the result to the last argument. Hence we write

iS5 ... S, 0=0K] 5 Sn )t K (Capp )
where as before 5 Is obtained by performing the transformation " on each procedure that
appearsin S. For example,
lif xiffel[Kfj=(f x K
flifact sublin)) Jel[KJl=(fact subl(n) K
ﬂ;: <) E oix,v)) o lIK]] PI o) [ ¥ (X, ¥ K
E <, k) [ERe [x] » K
[ig procia) (f a b)) JelKl=1ig ([procia) (f a b))} K
LkIlE a bilelk] K
] pr 1.kl (f a b k) K
H;.':"' X, ¥ IL X ¥ i]l[l'r._l] K pProci(x., ¥ i
k ' ) o0kl

In the second example, f act was a 1-argument procedure in the original program, but is a 2-
argument procedure in the transformed program. Similarly, in the fourth example, the original g
took a 1-argument procedure as its sole argument; in the transformed program g takes two
arguments: a procedure and a continuation. Since the procedure passed to g will likewise be
applied to an argument and a continuation, it must be transformed as well, even though its body
happensto bein tail form. The fourth example completes the last example from the first rule.



4. 1t may be that one of the head positions of E is non-simple. For example, E might be* (' n,
(fact subl(n))).Inthat case, wewould like to evaluate the non-simple head expression,
and send the result to a new continuation that performs the rest of the computation. Let E be (. . .
H...), whereH isanon-simple immediate subexpression of E in a head position. E need not be
an application, but we show parentheses for readability. We can write thisrule as

M(... H...)][K] =[Hlellproc i [[(...v... ) =K1 (Choas)
where v isafresh variable. Why does this work? When
ﬂff]]i[!pr.':r (T ][I:. .}l]iﬂﬁl]l]

is evaluated, the value of H is sent to the procedure

proc (oI l(...v.. )= [K]

whose bound variable is v and whose body is Ue..o-.. ) e LK . This procedure computes the
valueof (...v...)inanenvironment wherev is bound to the value of H, and sends the result to
the continuation K. Thisis the same as computing thevalue of (... H .. .) and sending the result
to K, asdesired.

This may be clearer if we look at some examples.

|]+IIE * ,':'ZI]I[]'r;T]

create a continualion for (£ = (Chaad)

[ x)Jellproc (vil+(v.y) l= Ik]]

send + (v,y) tok (Csimple-car)
[t x)Delprocivi (k +(v.y)) ]

transform the call to £ (Capp)
f X proc(v i‘: + AW, ¥

The expression to be transformed computes the value of (f x) (let uscall that value v) and
returns the sum of v and the value of y. In the transformed expression, the transformed procedure
f sendsthe valuev to its continuation argument, proc(v) (k + (v, y)).Hencev isboundto
v, so the sum of v and the value of y issent to k, as desired.



Hereis anested procedure call:

=00 (g =)).v) Dellkx]

= create a continuation for (£ (g x)) (Choad)
Dig (g x)) Dellprec(vil+(v.yv) De0xll

=send + (v.y) lok (Caimpte-our)
it (g x)) Jellprociv) (k (v, y)) ]

= create a continuation for (g x) (Chead)
[lig x)Jellprociwil(f w)Jelprociv) (k +iv,y) 1]

= transform the call to ¢ (Capp)
fig x)ellprociw) (£ w prociv) (k «(v.vi)) ]

= transform the call to g (Capp)

(g x proc(w) (f w proc(v) (k +({v,¥)]))

The expression to be transformed computes the value of (g x) (let uscall that value w). Then it
computes the value of f applied to w (let us call that v), and returns the sum of v and the value of
y. In the transformed expression, the procedure g sends the value w to its continuation argument,
proc(w) (f w proc(v)(k +(v,y))),whichbindstheidentifier wtow. Then the
proceduref receivesthe valuew, so it sendsthe value v to its continuation pr oc(v) (k +( v,
y) ) , which sends the sum of v and the value of y to k, as desired.

Below is an example of two procedure callsin operand position.

D+tif =), 1g yv))[=0k]

= create a continuation for (£ x) (Chead)
[(f x)Jeloroc (vil+iv, (g y)) D=0k0]

= (Chigad)
g x)Jellprociviig y) e [proc (w) [+ (v, w) [« [xI1]
= [C.-rr-.'pu‘f-:w )
Hif x)Jellprecivilig y)]eproc (w) (k +(v.w )]l

— {Cn;-p-]’
(f x proci(vilig y)Jelprociw) (k «(v.wi} ]}

= {CJ;‘:-J'

(£ x prociv) (g ¥ prociw) (k +[{v.w))))

Here (f x) isthefirst non-simple expression in head positionin+((f x), (g y)),and(g
y) isthefirst non-simple expression in head positionin+(v, (g y)) . Theorigina expression
computed (f x) (letuscal that valuev) and (g y) (let uscall that value w), and returned



thesum of vand w. If f and g have also been transformed, then the call to f in the transformed
expression will send v to the continuation proc(v) (g y proc(w) (k +(v,w))),thus
binding v to v. Similarly, the call to g will bind wto w, so the sum of v and w will be sent to k, as
desired.

Next, we show an example with a procedure passed to g, so we transform that procedure as well.

f+((f a b}, (g prectla)if a bi))) Jelx]
— (Chena)
it a b)) Jellprocivi[+iv. g procia) (£ a b)) Q«0Ix]]
= {Cheat)
fif a pi]ellproeciv) [ig procia) (f a b)) ]
eflprec (wi+ (v.w) D=0x111
= {Cmﬂ;‘fr--:u;}
Dif a b)jelprociv) Dig procial (£ a b)) ]}
efprociw) (k +(v,w) ) 11
= '[Cnml}
lif a byJeflprociv) (g {(procia) (f a b))
prociw) (k +{v.,wl)) ]
- [cprw}

Dz a p)jellpreciv) (g procia,k)[(f a b)Je[Ik]
prociw) (k +(v,w))) ]l
= [C-r,lrp}
fif a b)Jeflprocivi (g procia,k) (f a b k)
prociw) (k +(v,w))) ]
= (Capp)
(f a b prociv) (g procla,k)(f a b k)
prociw) (k +{v,wll])

Because the Chead rule is applicable to any expression that has a non-simple subexpression in head
position, we can also consider | et expressions:

flet z = (£ x) u =2z in (g z u) Jelk]

= (Chead)
fif x)leflprocivillet 2 = v u = z in (g z ulJe[k]]

= (Cepp)
(£ x procivifllet z = vu = z in (g z u) =k



Here we havetakenthe (f x) that appearsin head positioninthel et and promoted it to be
evaluated first, in a continuation that binds v to the resulting value and continues with the
evaluation of thel et . Wewill present the rule for transforming thel et next.

5. Finally, E is non-simple, and contains some non-simple subexpressions, but all the head
positions in E contain simple expressions. Since in our language, every position is either a head
position or atail position, it follows that E contains some non-simple subexpressions in tail
position in E. Consulting figure 8.2, we see that E must be either ani f ,al et ,oral etrec
expression. In this case, we can move the continuation K into the tail position. These three rules
are called Cif, Ciet, and Cietrec:

[if S then E; else E;]jJo[[K]

Cy
— it ((S) then [E,Je K] ese [E:]=IK] (Cy)
[I:'.'E'L'. Ty wS...0 =5y in E]]'.ﬂh']] (Cit)
= let vy ={S1))...0n = {{Su)} in [ED= K] “
[ietrec
Prixy, ..., Yn. ) = Ey
Pm(Zyseees2n,) = Em
in E K
inER-IK] (Cutrec)
laetrac

PmlZte.en . Zn, K] = [Exlle[k]
in IE]e IK]

Intherulefor | et r ec, wetransform each of the procedures, and then we transform the body in
the given continuation K.

In the transformationsfor | et and| et r ec, we bring the continuation K into the scope of the
declarations. Therefore, if any variable declared in the expression happens to occur freein K it
must be renamed or otherwise rearranged in the expression so that it will not capture the variable
in K. Thisis among the details we will deal with in section 8.4.



[if addi({(f x)) then y elase z[e[[k]]

= create a continuation for add1 ( (£ x)) (Choad)
[addri(f x))Jellprecivi[[if v then y else z]«[k]ll

= move continuation k inside the if (Cy)
fadd1((f x))]Jeprociviif v then [ylelk] else [z]e«[k]]

= transform y and z {Cimpleoar)
laddii((f x))Jelprociviif v then (k y) else (k z)]

= create a continuation for (£ x) (Chead)

[lif x)ellprociw)

laddi (w) Jellpreciviif v then (k y) else (k z)[ll
= bind v to addl (w) (Cy
fif x)Jellprociw

let v = addl(w) in if v then (k y) else (k z)]
= transform call to £ (Capp)
(f x proc(w)let v = addl{w) in if v then (k y) else (k z})

rllpn!rpm.‘}

Figure 8.4 Transforming with procedural continuations

The rule Csimple-proc IS Often used when processing these expressions, asillustrated in figure 8.4.
Exercise 8.12 [ *] For each expression E, below, find the expression [ E T # [Tk ]].

L(p +(8,x) (qy)).

2.add1((f (g x y) +(u,v)))

3.add1((f (g x y) +(u,(h v))))

4.zero?(if a then (p x) else (py))

5.zero?(if (f a) then (p x) else (p Vy))

6.1 et x let y =8in (py) inx

7.1et Xx if athen (p x) else (py) inx

Exercise 8.13 [ *] Our transformationof + ( (f X), (g y)) evauated (f X) first. CPS-transform
this expression so that it evaluates (g y) first by choosing (g V) firstin rule Chead.



Exercise 8.14 [ *] Find the transformationsof + ((f X), (g (h y))) corresponding to each
possible order of evaluation.



Exercise8.15[* *] Whenani f expressonsuchasi f zero? (n) then O else (f subl
(n)) appearsinside alarge expression, then the CPS-transformed expression will look likei f  zer 0?
(n) thenKO0O)el se( subl(n) K)whereK representsthe continuation that abstracts the context

of the large expression. This reveas a shortcoming of the CPS transformation. Since the program text of K
appears in two places, the size of the transformed program can grow exponentially. Show how this may be

avoided by binding a fresh variable to K.

Exercise 8.16 [ * *] The rule Csimple-proc can be simplified further. We can tell by examining Chead, that in any
continuation Pr OC (v) T, v occurs only once in T. Furthermore, v never occurs inside any binding occurrence
of avariable from the original program. Therefore the rule Csmple-proc could be replaced by

[EQe [proc (v) T = TI{(E)/v]

{CHMﬂkﬂntq

where the notation E1[E2/X] means expression E1 with every free occurrence of the variable x replaced by E2,
being certain to avoid any unintended variable capture (exercise 2.11). How would the examples of Csimple-proc
shown in this section change if this version of the rule were applied? Redo figure 8.4 using this version of the

rule.

8.3 Examples of the CPS Transfor mation

We next work through a few examples, starting with the factorial function.

{letrec
factin) =
if zero?(n)
then 1
else #(n, (fact sublin)))
in (fact 4)}
= the program will accept a continuation
proc (k)
llerrecs
fact(n) =
if zero?(n)
then 1
else *=(n, (fact subl(n)))
in (fact 4)]J«[k]
= transform the letrec
proc (k)
letrec
factin, k) =
[if zero?(n)
then 1
else «(n, (fact sublin)))]« k]
in J(fact 4)]-[x]

(Cpgm)

rcl'd e ;]



= transform the body (Ceimpie-var)
proc (k)
letrec
factin, k) =
[if zeroc?in)
then 1
else o{n, (fact sublin)))]e[k]
in (fact 4 K)
= take the continuation inside the 1 £ (Cr)
proc (k)
lacrac
factin, k) =
if zero? (n)
then [1]e[k]
else [¢(n, (fact sublin))) J«[x]
in {(fact 4 k)
= transform the then (Cobmeple-var)
proc (ki
letrec
factin, k) =
if zero?in)
then (k 1)
else [¢in, (fact subl(n)))]e[k]
in (fact 4 k)
= transform the else: compute (fact subl(n)) ina
continuation that will finish the caleulation (Chgd)
proc (k)
latrac
factin, k} =
if zero?(n)
then (k 1)
else [(fact sublin))]e[proc (v)[s(n,v) eIkl
in (fact 4 k)
= sends(n,v) ok {Cﬂ".mplfr-mF}
proc (k)
letrec
factin, k) =
if zero? (n)
then (k 1)
else [(fact subl(n)) Jeprociv) ik =in,vi)]
in (fact 4 k)



= last, transform the recursive call to £act (Capp)
procik)
letrec
facrin, k) =
1f zero?(n)
then (k 1)
elge (fact sublin) prociv){k =in,v}}]
in {(fact 4 ki

which, when applied to pr oc( val ) val iswhat we had on page 307.

For our examples, we will be primarily concerned with the transformation of procedures defined
inal etrec expression. So we will just look at the declaration part of thel et r ec and use the

(=N notation for this purpose.

For our next example, we transform r enove from section 1.2.2. Since we do not have symbolsin
our language, we will remove numbersinstead. We assume we havecons, car, cdr,
enptylist, null?andequal ?fromthe earlier exercises 3.7 and 3.11. In our defined
language, this becomes

letrec renove(n, lon) = if null?
(l1on) then enptyli st el se if equal ?(s, car
(lon)) then (renmove n cdr(lon)) el se cons(car (Il on),

(remove n cdr(lon)))in ..

which we transform as follows:

fllecrec
remove (n, lon) =
if null?(len)
then emptylist
else if equal?(s,car(lon))
then (remove n cdr(lon))
else conscar(leon), (remove n cdrileon))))}
= transform the procedures in the letrec
letrec
remove (n, lon, k) =
fif null?(lon)
then emptylist
else 1if equal?(s,car(lon))
then (remove n cdr(lon))
else cons(car(lon), (remove n cdr(lon))) e[kl



= take the continuation inside the if (Cy  (twice))
letrec
remove (n, lon, k) =
if null?(lon)
then [emptylisc]e[k]
elge if equal?(s,carilon))
then [(remove n edrileon) ) ]e=[k]
else [cons(car(lon), (remove n cdr(lon))) Je[k]
latrec
removein, lon, k) =
if null?(lon)
then (k emptylist)
else if equal?(s.car(lon))
then [i(remove n cdrilomn)) Jelk]
else [cons(car(lon), (remove n cdrilon))) Jelk]
= the first call to remove s already in tail position (Capp)
letrec
remove(n, lon, k) =
if null?(lon)
then (k emptylist)
elge if equal?(s,car(lon))
then (remove n cdrilon) k)
else [cons(car(lon), (remove n cdr(len))) Je[k]
= create a continuation for the context of the second {Chrad)
call to remove
letrec
remove (n, lon, k) =
if null?(lon)
then (k emptylist)
else if equal?(s,car(lon))
then (remove n cdr(lon) k)
else [[(remove n cdr(lon))]
slproc (v) [cons (car (1on) ,v) Je [k]]
= send cons (car(len),v) fok (Coimple-var)
letrec
remove(n, lon, k) =
if null?(lon)
then (k emptylist)
elae if equal?(s,car(lon))
then (remove n cdr({lon) k)
else [[(remove n cdr(lon))]
e[proc (v) (k cons(car(lon),v))]



(Capp)

= transform the call to remove
letrec
remove(n, lon, k) =
if null?(len)
then (k emptylist)
elae if equal?(s,car(lon))
then (remove n cdr(lon) k)

else (remove n cdr(lon)
proc (v) (k cons{car({lon),v)))

and we are done.

Finally, we transform subst (with nunber ?) from section 1.2.2.

{{letrec
subst (new, old, nlist) =

if null?(nlist)

then emptylist
else cons((subst-in-num-exp new old car(nlist)),

(subst new old cdr(nlist)))

subst-in-num-exp(new, old, ne) =

if number?(ne)
then if equal?(ne,old) then new else ne

else (subst new old ne)))
= transform the procedures in the letrec
letrec
subst (new, old, nlist, k) =
fif null?(nlist)

then emptylist
else cons((subst-in-num-exp new old (car nlist)),
{subst new old edr(nlist)))]e[k]

subst-in-num-exp (new, old, ne, k) =

lif number?(ne)
then if egqual?(ne,old) then new else ne

else (subst new old ne)]e[k]
= move the continuations inside the if expressions (Cy (several times))

letrec
subst (new, old, nlist, k] =
if null?(nlisc)
then [emptyliste[k]
else [cons((subst-in-num-exp new old car(nlist)),
(subst new old ecdrinlist))) e[k}
subst-in-num-exp (new, old, ne, k| =

if number?(ne)
then [if equal?ine,old) then new else nels[k]

else [(subst new old ne)]e[k]



= send simple values to k (Coimplenar  [bwice))
letrec
subst (new, old, nlist, k) =
if null?(nlist)
then (k emptylist)
else [chnsttsuhstuin-num-gxp new old carinlistc)),
{subst new old cdrinlistl))]e[k]
subst-in-num-exp (new, old, ne, k) =
if number? (ne)
then (k if equal?(ne,old) then new else ne)
else Jisubsr new cld ne) JeJk]
= create contintuation for call fo subst - in-num-exp (Chead)
letrec
subst (new, old, nlist, k) =
if null?(nlist)
then (k emptylist)
else [(subst-in-num-exp new old carinlist))]
o[proc(v)
lcons v, (subst new old cdr(nlist)))]]
*[x10
subst-in-num-exp{new, old, ne, k) =
if number? (ne)
then (k if equal?(ne,old}) then new else ne)
else [(subst new old ne)]e[k]
= create continuation for call to subst (Chead)
letrec
subst (new, old, nlist, k) =
if null?(nlist)
then (k emptylist)
else [(subst-in-num-exp new old car(nlist))]
elprac v}
[isubst new old cdrinlist))]
s[proc (w)
Icons (v, w) [« [111
subst-in-num-exp{new, old, ne, k) =
if number? (ne)
then (k if equal?(ne,old}) then new else ne)
else [(subst new old ne)[e[k]



= sendcons(v,w) ok (Csimple-var)
letrec
subst (new, old, nlist, k) =
if null?(nlist)
then (k emptylist)
else [(subst-in-num-exp new old car(nlist))]]
e[proc (v
[ (subst new old ecdr(nlist)}]
s[prociw)
{(k cons(v,w) )]
subst-in-num-exp (new, old, ne, k) =
if number? (ne)
then (k if equal?(ne,old) then new else ne)
elge [[(subst new old ne)]e[k]
= Fransform the call fo subst (Capp)
letrec
subst (new, old, nlist, k) =
if null?(nlist)
then (k emptylist)
else [(subst-in-num-exp new old car(nlist)]}]

s[prociv)
(subst new old cdrinlist)
prociw)

(k cons(v,wl))]
subst-in-num-exp (new, old, ne, k) =
if number? (ne)
then (k if equal?(ne,old) then new else ne)
else [(subst new old ne)]e[k]
= transform the call to subst - in-num-exp (Capp)
letrec
subst (new, old, nlist, k) =
if null?{nlist)
then (k emptylist)
else (subst-in-num-exp new old car(nlist)

proci(v)
(subst new old cdr(nlisc)
proc(w)

(k cons(v,wl)))
subst-in-num-exp (new, old, ne, k) =
if number?(ne)
then (k if equal?(ne,old) then new else ne)
else [(subst new old ne)]«[k]



= transform the call o subst (Capp)
letrec
subst (new, old, nlist, k) =
if null?inlist)
then (k emptylist)
else (subst-in-num-exp new old carinlist)
proc (vl
{subst new old cdrinlist]
proc (w)
[k consiv,wll]l]
subst - in-num-exp (new, old, ne, k)l =
if number? (ne)
then (k if equal?(ne,old) then new else ne)
else (gubst new old ne k)

whichisin tall form, as desred.

Exercise 8.17 [ *] In this example, we chose to evaluate the two operands to cons in left-to-right order.
Transform this example to CPS again, evaluating the two operands to cons from right to left.

Exercise 8.18 [ *] For each of the definitions in this exercise, do the following: first, test the definition with
the proceduret ai | - f or N of exercise 8.10. Include asample call to the procedure as the body of the

| et r ec. Then transform the definition to continuation-passing style using the rules of this section. Verify
that the transformed definition isin tail form by usingt ai | - f or nf?. Then test the transformed definition

using the continuation pr oc( val ) val . Be sure that the original and transformed versions give the same
answer on each input.

1.renoveal | .
letrec removeal | (n, s) = if null?
(s) then enmptyli st el se i f nunmber?(car
(s)) then if equal ?(n, car
(s)) then (renoveall n cdr(s)) el se cons(car
(s), (rermoveall n cdr(s))) el se cons

((removeal |l n car(s)), (rermoveal | n cdr(s)))



2.0ccurs-in?.

letrec occurs-in?(n, s) = if null?
(s) then 0 el se i f nunber?(car(s)) then if equal ?(n, car
(s)) then 1 el se (occurs-in? n cdr
(s)) else if (occurs-in? n car
(s)) then 1 el se (occurs-in? n cdr(s))

3.renfirst.Thisusesoccur s-i n? from the preceding example.

letrec renfirst(n, s) = letrec | oop(s) = if null?
(s) then enptyli st el se i f nunber?(car
(s)) then if equal ?(n,car(s)) then cdr
(s) el se cons(car(s), (loop cdr
(s))) else if (occurs-in? n car
(s)) then cons((renfirst n car
(s)), cdr(s)) el se cons(car
(s), (renfirst n cdr(s))) in (loop s)
4. dept h.
letrec depth(s) = if null?(s) then 1 el se i f nunber?
(car(s)) then (depth cdr(s)) else if | ess?(addl
((depth car(s))), (depth cdr
(s))) then (depth cdr(s)) el se addl

((depth car(s)))



5.depth-with-1let.

letrec depth(s) = if null?(s) then 1 el se i f nunber?
(car(s)) then (depth cdr(s)) el se let dfirst = addl
((depth car(s))) drest = addl((depth cdr
(s))) inif less?
(dfirst, drest) t hen drest el se dfirst

Exercise 8.19 [ *] Transform the following procedures into CPS.
1. map.

letrec map(f, 1) = if null?2(l) then enptyli st el se cons
((f car(l)), (map f cdr(1))) square(n) = *(n,
n) in (mp square list(1,2,3,4,5))

2.f nl r gt n. This procedure takes alist of numbers| on and a number n and returns the first
number in the list (in left-to-right order) that is greater than n. Once the result is found, no further
elementsin the list are examined. For example,

> (fnlrgtn list(1,list(3,1ist(2),7,1ist(9)))6)

finds 7.

3. addgt n. This procedure takes alist of numbers and a number n as arguments. It returns the
sum of al numbersin thelist that are greater than n.

letrec addgtn(l,n) = if null?
() then 0 else if greater?(car(l), n) then +(car(l),
(addgtn cdr (1) n)) el se (addgtn cdr(l) n) in (addgtn list

(1,5, 10, 50) 5)



4. every. Thisprocedure takes a predicate and alist and returns atrue value if and only if the
predicate holds for each list element.

letrec every(pred, |) = if null?
() then 1 else if (pred car(l)) then (every pred cdr
(1)) else 0 in (every proc(n)greater?(n,5) list(6,7,8,9))

8.4 Implementing the CPS Transfor mation

Our next task isto implement the transformation described in section 8.2. We will have three main
procedures, one for each of the main operations in the transformation: cps- of - pr ogr am

(f }], cps- of - si mpl e- exp =) and cps- of - expr essi on ([-D=01-D

The procedure cps- of - si npl e- exp, shown in figure 8.5, takes a simple expression. If the
argument isapr oc expression, then cps- of - si npl e- exp returns another pr oc expression
with an additional continuation formal parameter and with a body transformed by cps- of -
expr essi on. If theargument isnot apr oc expression, then cps- of - si npl e- exp creates
an expression like the original, but in which every pr oc expression contained in the original is
similarly transformed. Procedures declared inal et r ec are aso transformed in thisway, as
described in section 8.2.

The definitions of cps- of - pr ogr amand cps- of - expr essi on are presented in figure 8.6.
The procedure cps- of - pr ogr amtakes a program and builds a proc expression with a
continuation formal parameter and a body that contains the transformed expression, as described
in section 8.2.

The procedure cps- of - expr essi on implements the rules of section 8.2. It first tests to see
whether the expression issimple; if so, then it calls the procedure csi npl e, which applies either
Csimple-var Or Csimple-proc. Otherwise, it sends the information to an auxiliary procedure that performs
therest of the transformation. Inthel et r ec and thel et clauses, we make atest to determine if
the continuation is a variable and invoke the appropriate auxiliary procedure. If the continuation is
not avariable, thenitisapr oc- exp, and it may therefore contain variables that may be captured
by thel et or | etrec, ason page 315. We defer the discussion of this capturing case until
later.

The variable k- i d isbound to afresh identifier that we use as our bound variable for
continuations throughout the transformed program. We use



(define cps-of-sinple-exp (lanbda (exp) (cases expression exp (proc-

exp (ids body) (proc-exp (append ids (list k-id)) (cps-
of - expressi on body k-var-exp))) (lit-exp (datum (lit-exp datum) (var-
exp (id) (var-exp id)) (primapp-exp (primrands) (pri mapp-

exp prim (map cps-of-sinple-exp rands))) (if-exp (test-exp true-exp false-
exp) (if-exp (cps-of -si npl e-exp test-exp) (cps- of -

si npl e-exp true-exp) (cps-of -sinmpl e-exp fal se-exp))) (let-

exp (ids rands body) (let-exp ids (map cps-of -sinpl e-

exp rands) (cps-of -si npl e-exp body))) (letrec-exp (proc-

nanes i dss bodi es | etrec-body) (letrec-exp proc-

names (map (lanmbda (ids) (append ids (list k-
id))) i dss) (map (1 anbda (body) (cps-
of - expressi on body k-var-exp)) bodi es) (cps- of - si npl e-

exp letrec-body))) (app-exp (rator rands) (eopl:error 'cps-of-sinple-
exp "Can't call on application ~s" exp)) )))

Figure85cps- of - si npl e- exp




k- var - exp to denote an expression containing the identifier k- i d. We generate k- i d and
other new identifiersusing gensynbol , which takes an argument that becomes the beginning of
the resulting unique name. We usevar - exp? to test whether an expression isavariable. See
figure 8.7.

Now we describe each of the auxiliary procedures in turn, in increasing order of difficulty. Each
auxiliary procedure finds the non-simple subexpressions, if any, of the expression, and applies the
appropriate rule: either Capp, Chead, or one of Cif, Ciet, Or Cetrec.

Let usfirst consider i f expressions. The Capp ruleis not applicable, so the only two possible rules
are Chead and Cit. Chead appliesif there is a non-simple subexpression in head position. For ani f -
expression, the only head position isthe test. So if the test expression is non-simple, then the
transformation should be:

lif H then E; else E;] o [[K]

) i C hes
— [H] e llproc () [if ? then E; erse Ea] o [K]] (Choar)
If the test expression is simple, then the transformation is given by Ci
[if S then E; else E;[Jo[K] (C.)
1f ((S)) then [[E K] else [E:]l«[K] J
We can code this transformation as follows:
(define cps-of-if-exp (lanmbda (test-exp true-exp fal se-exp k) (if (non-
si npl e? test-exp) (let ((v-id (gensymbol "v"))) (cps-of -
expressi on test-exp (proc-exp (list v-id) (cps-of -
expression (if-exp (var-exp v-id) true-exp false-
exp) k)))) (if-exp (cps-of-sinple-exp test-
exp) (cps-of -expression true-exp k) (cps-of - expression fal se-
exp k)))))
L et us next consider non-simple primitive applications. A primitive application p (Eg, . . ., En) is
non-simpleif and only if at least one of Eg, . . ., Enisnon-simple. Therefore the expression must
be of theformp (S, . . ., S-1, B, Ei+1, . . ., En,), where Ei is the first non-simple subexpression. We
therefore apply the Chead rule to get
Styee s S EnEgy. - Eq) o IK
[pi5, 1 +1 I=[0K] (Cheat)

= [EDellprec v [piS, ...  S5i-1, 0 Eisty..., En} ] [K]



(define k-id (gensynbol "k"))(define k-var-exp (var-exp k-id))(define cps-

of -program (Il anbda (pgm (cases program pgm (a-

program (exp) (proc-exp (list k-id) (cps- of -

expression exp k-var-exp)))))) (define cps-of-

expression (lanmbda (exp k) (if (non-

si npl e? exp) (cases expression exp (if-exp (test-exp true-

exp fal se-exp) (cps-of -if-exp test-exp true-exp false-

exp k)) (primapp-exp (primrands) (cps-of - pri mapp-

exp primrands k)) (app-exp (rator rands) (cps- of - app-

exp rator rands Kk)) (letrec-exp (proc-nanes idss bodies |etrec-
body) (cps-of -l etrec-exp proc-nanes idss bodies |etrec-
body k)) (let-exp (ids rands body) (cps-of-let-

exp ids rands body k)) (el se (eopl:error 'cps-of-

expressi on "Can't call on ~s" exp))) (csinmple exp k))))
(define csinmple (lanbda (exp k) (cases expression k (proc-

exp (ids body) (let-exp ids (list (cps-of-sinple-

exp exp)) body)) (el se (app-exp k (list (cps-of-sinple-exp exp)))))))

Figure8.6 cCps- of - pr ogr amand cps- of - expr essi on




(define gensynbol (let ((n 0)) (lambda (s) (set! n (+ n 1)) (let ((s (if (string? s) s (synbol-
>string s)))) (string->synbol (string-append s (nunber->string n)))))))(define var-
exp? (lanbda (x) (cases expression x (var-exp (id) #t) (else #f))))

Figure 8.7 Auxiliaries for generating identifiers and variables

This transformation can be implemented by the following code:

(define cps-of -primpp-exp (lanbda (primrands k) (let ((pos (list-index non-sinple? rands)) (v-
id (gensynbol "v"))) (cps-of -expression (list-ref rands pos) (proc-exp (list v-id) (cps-
of - expressi on (primapp-exp prim (list-set rands pos (var-exp v-

id))) k))))))

Here we use two procedures that were defined in section 2.3.2. The procedure (1 i st -i ndex pred | st) returnsthe zero-based index
of thefirst element of | st that satisfies the predicate pr ed. Since the primitive application is known to be non-simple, thisis guaranteed
to succeed. The new call to pisbuilt withl i st-set. Theprocedure(li st-set |st n x) returnsalistlikel st , except that the nth
element, using zero-based indexing, isx.

We next consider procedure applications. For a procedure application, we need to decide whether the rule Capp or the rule Chead applies. If
both the rator and all of the rands are ssmple, then Capp applies:

[(So ... Sa)DelKD = t{{So}) ... {(5a)} K (Capp)



If there is a non-simple subexpression, then we need to use Chead:

II[51:"'|54—11E.'1E4+1.|”':E-'I:'H-[I.K]]

= [EJollproc it [ (51,... 51,0 Eis1y--, Ex) Do [ K] (Chead)

Although this notation treats operators and operands uniformly, our abstract syntax trees treat
them separately. We therefore begin the implementation of these rules by testing to seeif the
operator isnon-simple. If itis, then it will be the expression selected for evaluation by Chead:

(define cps-of-app-exp (lanmbda (rator rands k) (if (non-

sinpl e? rator) (let ((v-id (gensynmbol "v"))) (cps-of -
expressi on rator (proc-exp (list v-id) (cps-of -
expressi on (app-exp (var-exp v-

i d) rands) k)))) (cps- of - app- exp- si npl e-

rator rator rands k))))(define cps-of-app-exp-sinple-

rator (lanbda (rator rands k) (let ((pos (list-index non-

sinpl e? rands))) (i f (nurber? pos) (let ((v-

id (gensynbol "v"))) (cps-of - expression (list-
ref rands pos) (proc-exp (list v-id) (cps-of -
expressi on (app-exp rator (list-

set rands pos (var-exp v-id))) k)))) (app-exp (cps-
of -si npl e-exp rator) (append (rmap cps-of -si npl e-
exp rands) (list kK)))))))

For asimple operator, we usel i st - i ndex to find the position of a non-simple operand. If there
isone, we apply Chead much aswe did for primitive applications. Otherwise, we apply the Capp
rule.



Thenext caseisl| et r ec. Theonly rulethat appliesto anon-simplel et r ec expression is Cetrec:

[letrec
PiXy, oo X ) = Ey

Pm(Z1. s i Zny) =Em
in E]e[K]
= (Cretrec)
letrec

prixy, oo X k) = [E ] elx]

Frﬂ |:-=I: .-zn..ak} = H:En]]'l]:i'f-l]
in [EQ«[IK]

As mentioned on page 315, however, this can cause variables in K to be captured if they are
declaredinthel et r ec. For example, consider

[(fact letrec
fact(n) =
in (fact &)1« [kl
= create a continuation for the letrec (Ciypad )
[letrec
faccin) = ...
in (fact &)]e[[procivilifact v =0k]]
= transform the call to fact (Capp)
[letrec
factin) = s
in (fact &)+ [prociv) (fact v k]
= transform the letrec (Chree )
letrec
factin, ki = [...J=[k]
in [(fact &) ]e[[prociv) ifact v k)]

Now thereferenceto f act inthe continuation will be captured by the definition of f act inthe
| et rec,whenitoriginally referred to some other binding. We can avoid this difficulty by using
therule

NEJ»[[K]l = 1let k = K in[[E]l=[x] (C bt )

when K isnot avariable. (Herek istheinitial continuation variable bound to k- i d). Thisreduces
the problem of transforming the| et r ec to the case in which the continuation is a variable, when
no captureis possible.



(define cps-of-letrec-exp (lanbda (proc-nanes idss bodies |etrec-

body k) (if (var-exp? k) (letrec-exp proc-

nanes (map (lambda (i ds) (append ids (list k-
id))) i dss) (map (lambda (body) (cps-
of - expr essi on body k-var-exp)) bodi es) (cps-of -

expression | etrec-body k)) (cbi ndk (letrec-exp proc-

nanes i dss bodi es |etrec-body) kK))))

(define chindk (lanbda (exp k) (let-exp (list k-id) (list k) (cps-

of - expressi on exp k-var-exp))))

For our example above, we then get

= transform the call to £act {C‘F‘F}
[letrec
fact(n) = ...
in (fact &) Jelprociv) (fact v k)]
= bind the continuation o a variable (Coingr)

let k = prociv) (fact v k)
in [[letrec
factin) = ...
in (fact &) ]« [[k]
= transform the letrec (Crarne)
let k = prociv) (fact v k)
in letrec
factin, k) = [...0«[k]
in [(fact &) Qe [k]

andthecall tof act inthe continuation is safely out of the scope of thel et r ec declarations.



Thisleaves| et expressions. For anon-simplel et expression, there are two possibilities:. if all
of the right-hand sides are simple, then Ciet applies:

[let vy = 5,...0 = 5, in EJ o [[K]] (Cree)
= let vy ={{51))...0n = {{54)) in [ED«[K] ;

In this case, we need to worry about variablesin K being captured by thel et variables, so we
once again use Crindk to avoid capturing whenever K is not avariable. The other possibility is that
there is a non-simple right-hand side in the declarations; in that case we use Chead, which becomes

Miet o, =5, ... By = 5i-y
v =E;
Vis1 = Eigq ... Un = Ey
in E]«[K]l
= (Chend)
IEilellprocizi [let v =5y ... Uiy = 512y
Uit1 = Eig1+.. Un = Ey
in E[ «[K]

The procedure cps- of - | et - exp appliesthis Chead rule repeatedly until it is no longer
applicable. Then it appliesthe Ciet rule.

(define cps-of-let-exp (lanbda (ids rands body k) (if (var-

exp? k) (let ((pos (list-index non-

sinpl e? rands))) (i f (number? pos) (let ((z-

id (gensynbol "z"))) (cps-of - expression (list-
ref rands pos) (proc-exp (list z-id) (cps- of -
expressi on (let-exp ids (list-

set rands pos (var-exp z-

id)) body) k)))) (let-

exp ids (map cps-of-sinple-exp rands) (cps- of -

expression body k)))) (cbindk (let-exp ids rands body) k))))

This completes the implementation of the CPS transformation. Go have a nice dinner.



Exercise 8.20 [ * *] Implement and test this transformation. Make sure that the tests consider every case. Then
have an even nicer dinner.

Exercise 8.21 [ *] Modify the transformer so that arguments to primitive applications and procedure
applications are evaluated from right to | eft.

Exercise 8.22 [ *] Thetransformation of CPS- Of - i f - @X copies the continuation k. This can cause an
exponential increase in the size of the transformed program (see exercise 8.15). Modify thei f clause of
cps- of - expr essi on to avoid this by first invoking the rule Chinck When K is not a variable.

Exercise 8.23 [ *] Each occurrence of Crindk dispatches through CpS- Of - expr essi on to the same

procedure from which it was called. Utilize this fact to avoid the callsto CpS- of - expr essi onin
Chingk.

Exercise 8.24 [ *] The code contains several occurrences of the call (CpPS- of - expr essi on exp k-

var - exp). Abstract theseinto (CpS- Of - t ai | - pos exp), and rewrite the code to use this abstraction
instead.

Exercise 8.25 [ * * *] Another way of avoiding variable capturein| et and| et r ec isto rename any

variablesinthel et or| et r ec declaration that would capture a free variable in the continuation
expression. Modify the transformer to avoid capture in this way, rather than using Coindk.

Exercise 8.26 [ * *] The Chead rule on page 335 can often be rewritten by replacing z by vi, thereby removing
thevi=z| et declaration. Thisonly workswhen vi isnot freein &, . . ., S-1, Ei+1, . . ., En. When it isfree, the
| et declaration can still be removed, but instead vi must be renamed to z and substituted for all free
occurrences of vi in E. Redefine Cps- of - | et - exp to incorporate this approach.

Exercise 8.27 [ % *] Modify the transformer to use Csimple-proc’ asin exercise 8.16 instead of Csimple-proc.

Exercise 8.28 [ *] Our CPS algorithm is correct only if the program does not contain variables KO,
ki, ..., vO, vl1, ...,andz0, z1, .... Ifthesevariablesappear inour program, then
those created by gensynbol will not be fresh. To specify the algorithm correctly, we must use f r esh-

I d from exercise 2.10. Theargumentstof r esh- i d include an expression, andf r esh-i d is
guaranteed to return a symbol that does not occur in that expression.

Modify the transformer to replace every occurrence of gensynbol , k-i d,ork-var - exp by an
appropriate call tof r esh-i d.

Some Scheme systems include a procedure g€NSYy M which generates a unique, never-used-before symbol.
How could gensy mbe used instead of f r esh- 1 d to correct our algorithm? Would that be more efficient
thanusing f r esh- i d?Explain.

Exercise 8.29 [ # ® *] Aswritten, this algorithm requires O(n2) time, because it potentially callsnon-

si npl e? O(n) times, and each call to NoN- Si Pl e? requires O(n) time. Rewrite the algorithm to
avoid this by using two passes. one to annotate each node of the abstract-syntax tree to indicate whether or not
it contains a simple expression, and then a second pass to perform the transformation.



Exercise 8.30 [+ * *] Modify the algorithm of this section to handle the typed language of section 4.2. It
should take a typed expression and produce ancther type expressions. Consider the following questions: if an
expression is of typei Nt , what type of continuation should it take? What should the type of the transformed
expression be? Next, consider apr OC expression. If itisof type (i Nt - > i Nt ), what should the type
of the transformed expression be? What if it wereof type ((int -> int) -> int)?

Exercise 8.31 [* * *] Hereis an implementation of a different CPS algorithm that builds from exercise 8.23
and exercise 8.24. Firgt, use this definition of cps- of -t ai | - pos:

(define cps-of-tail-pos (lanbda (exp) (cps- of -
expressi on exp (lambda (res) (app-exp k-var-exp (list res))))))

Instead of passing k- var - exp t o cps- of - expr essi on, we passin aprocedure that will
create the application of K- var - exp.

We change CSi npl e to acknowledge that K isindeed a procedure and not apr OC- €Xp. Moreover,
since K is aprocedure, we can no longer create al et - exp aswe did for Csmpleproc.

(define csinmple (lanbda (exp k) (k (cps-of-sinple-exp exp))))

What remains is to implement each of the auxiliary procedures. Two of them, Cps- of - app- exp and
cps- of - | et - exp are presented in figure 8.8.

The procedure CpsS- of - r ands islikeeval - r ands on page 263, but it does not take an environment
andthecall toeval - expr essi onisreplaced by acall toCcps- of - expr essi on.

First, implement and test this algorithm. Next, add CpsS- of - pri mapp- exp, cps-of-if-exp,
andcps- of - | et rec- exp. Finaly, apply the ideas for making more readable outputs as described in
exercises 8.25-8.28.

The algorithm as described often generates continuations of theformpr oc(v) (kK V) . Modify the
algorithm to generate k instead.

By restricting the definition of simple to include only literal, variable, and procedure expressions, this CPS
transformer becomes a one-pass algorithm. Revise our implementation so that it, too, becomes a one-pass
algorithm. In what fundamental ways do these two one-pass agorithms differ?



(define cps-of-app-exp (lanbda (rator rands k) (let ((cont-

exp (let ((v-id (gensynmbol "v"))) (proc-

exp (list v-id) (k (var-exp v-id)))))) (cps-of -
expressi on rator (I anbda (rator-res) (cps-of -

rands rands (lambda (rands-res) (app-exp rator-
res (append rands-res (l'ist cont-
exp)))))))))) (define cps-of-let-

exp (lanmbda (ids rands body k) (let ((cont-exp (let ((v-
id (gensynbol "v"))) (proc-exp (list v-

i d) (k (var-exp v-id)))))) (let ((exp (cps-of-
rands rands (lanrbda (rands-res) (let-
exp ids rands-res (cps-of-tail -

pos body)))))) (if (var-exp? cont-

exp) exp (cbindk exp cont-exp))))))

Figure 8.8 Two auxiliaries for exercise 8.31

8.5 M odeling computational effects

Another important use of CPSisto provide amodel in which computational effects can be made
explicit. A computational effect is an effect like printing or assigning to avariable, which is
difficult to model using equational reasoning. By transforming to CPS, we can make these effects
explicit in away that allows usto use equational reasoning even on programs that have such
effects. In this section, we will study three effects. printing, variable assignment, and non-local
control flow.



Let usfirst consider printing. In our defined language, printing would ordinarily be considered a
primitive that printed the value of its operand and returned 1. (See exercise 3.5.) It hasa
computational effect, however,so(f print(3) print(4)) and(f 1 1) havedifferent
effects, even though they return the same answer. The effect also depends on the order of
evaluation of arguments; up to now our languages have always evaluated their arguments from |eft
to right, but other languages might not do so. We can model these considerations by modifying
our CPS transformation in the following ways:

» We modify the definition of asimple expression so that pri nt (e) isnever smple. Hereeisin
head position.

* If the operand of pri nt issimple, theruleis
[print (S) Je[[K] = printe ({5}, K)

where pri nt ¢ isanew expression like pr i nt , except that it takes two arguments, which are
expected to be avalue and a continuation. The pr i nt ¢ expression prints the value and then sends
1 to the continuation.

* If the operand of pri nt isnot simple, we use Chead to transform it:

lprint tH) oK = [H] ® [proc (vl printe (v, K) ]|

Mif printiig x)) print(4)) Je(x] i

Thus
(g x proc(v4) printc(v4, proc(v2) printc(4, proc
(v3) (f v2 v3 k))))

Here, having received the continuation k, we call g in a continuation that callstheresult v4. The
continuation prints the value of v4 and sends 1 to the next continuation, which bindsv2 toits
argument 1, prints 4 and then calls the next continuation, which bindsv 3 to itsargument 1 and
thencallsf with 1, 1, and k. In thisway the sequencing of the different printing actions becomes
explicit.

Now the CPS transformation is from a source language (the one with pr i nt ) to adlightly
different target language (the one with pr i nt c). Figure 8.9 shows the code to implement this
transformation.



(define cps-of-expression (lanbda (exp k) (if (non-

si npl e? exp) (cases expression exp (print-exp (exp) (cps-of-
print-exp exp k)) ca) (csimple exp k))))(define cps-of-print-
exp (lambda (exp k) (if (non-sinple? exp) (let ((v-

id (gensynbol "v"))) (cps-of - expression exp (proc-
exp (list v-id) (printc-exp (var-exp v-id) k)))) (printc-

exp (cps-of-sinple-exp exp) k))))

Figure 8.9 CPS transformation for pr i nt

We next consider variable assignment. To do variable assignment, we need to make two effects
explicit: assignment to variables and dereferencing of variables. Therefore we will add a target-
language expression for each of these. We can describe the transformation of set (figure 8.10)
much as we did the transformation of pri nt .

» A set expression isnever ssimple, and its right-hand-side expression isin head position.
* If the right-hand-side expression of set issimple, theruleis
lzer x = SYe|K]] = sezc x {(5)) K

where the expression set ¢ x e K evaluates the expression e, stores the result in the reference to
which variable x is bound, and then sends 1 (the value of the analogous set ) to the continuation K.

* If the right-hand-side expression of set isnot simple, we use Chead to transform it and then
assign theresult using set c:

[set x =« H o [K]] = [H] ® [proc(v)setc x v K]



* Since evaluation of avariable involves a dereference, a variable from the source language is no
longer ssimple. Since a generated variable (one created by gensynbol ) is never mutated, we can
treat it as an unsettable variable, not a source language (reference) variable. Therefore a generated
variableis simple. Since we must distinguish these two cases, we add genvar - exp asanew
variant of expr essi on and definegenvar - exp?. At every place in the transformation where
we had previously applied var - exp to agenerated variable, we use genvar - exp instead.
Furthermore, since k- i d isagenerated variable, everywhere we used var - exp? to test to see
whether a continuation was a variable, we now use genvar - exp? instead. See figure 8.10.

» We transform source, but not generated, variables as
[x|e[K]] = derefc x K

where the expression der ef ¢ x K retrieves the binding of the identifier x and sends its contents to
the continuation K.

Hence Iset x = addl(x) Je[lk]

derefc x proc(v9) let v8 = addl(v9) in setc x v8 k

First, x is dereferenced and v9 is bound to the result. Then add1 isappliedtov9, andv8 is
bound to the result. Last, the value of v8 is assigned to the reference to which x is bound, and the
continuation k isinvoked.

Hereisasubtler example: [ (£ set x = addl(x) +(2,x)) Je[k]s

derefc f proc(v2) derefc x proc(v7) let v6 = addl
(v7) in setc x = v6 proc
(v3) derefc x proc

(vb) let v4 = +(2,vD) in (v2 v3 v4 k)



(define-datatype expression expression?
(var-exp
(id symbol?))
(JENVAL -8xp
{id symbol?))
.al

idefine genvar-exp?
(lambda (x)
(cases expression x
(genvar-exp (id) #t)
(elgse #L))))

(define k-var-exp (genvar-exp k-id))

(define cps-of-expression
{lambda (exp k)
(if (non-simple? exp)
(cases expression exp
(var-exp (id) (derefc-exp id k))
(varassign-exp (id exp)
(cps-of-varassign-exp id exp k))
eaal
(cesimple exp kll))

(define cps-of-varassign-exp
{lambda (id exp k)
(if (non-simple? exp)
(let (({v-id {genaymbol "wv")))
icps-of-expression
exp
(proc-exp (list w-id)
(varassignec-exp id (genvar-exp v-id) k))))
(varassignc-exp id (cps-of-simple-exp exp) k))))

Figure 8.10 CPS transformation for variable assignment




The code shows the sequence of dereference and assignment operations: first f is dereferenced,
yielding v2, and x is dereferenced twice: once before the set ¢ (yielding v7) and once afterwards
(yielding vb).

Asalast example, we consider | et cc from exercise 7.31. A | et cc expresson| et cc
<identifier>i n <expression> binds the current continuation to the variable <identifier>. The only
operation on continuationsist hr ow. We uset hr ow <expression>t 0 <expression>, which
evaluates the two subexpressions. The second expression should return a continuation, which is
applied to the value of the first expression. The current continuation of thet hr owexpression is
ignored.

We first analyze these expressions according to the paradigm of this chapter. These expressions
are never simple. The expression part of al et cc isatail position, since its value is the value of
the entire expression. Since both positionsin at hr ow are evaluated, and neither is the value of
thet hr ow (indeed, the t hr ow has no value, since it never returnsto itsimmediate continuation),
they are both head positions.

We can now write down the rules for converting these two expressions. For | et cc, theruleis
fietcc x in EJef[K]] = 1et ¥ = K in [EJe[x] Cletee
For t hr ow, theruleis
[throw §; o S;[o[K] = ({(S:) (S Coeroes

and K isignored, as desired. If either of the operands of t hr ow are non-simple, than Chead should
be applied.

Exercise 8.32 [ *#] Implement these transformations.

Exercise 8.33 [ * *] If avariable never appears on the left-hand side of aset expression, thenitis
immutable, and could be treated as simple. Revise the implementation so that al such variables are treated as
simple.

Exercise 8.34 [ * *] Add an expression begi n E1 Ez to the language of this chapter.

Exercise 8.35 [ * *] Extend the previous exercise to include begi n expressions with more than one
subexpression.

Exercise 8.36 [ * *] Extend exercise 8.31 toinclude| et CC expressions.



Further Reading

Steele's RABBIT compiler (1978) uses CPS conversion as the basis for acompiler. In this
compiler, the source program is converted into CPS and then into iterative form, which can be
compiled easily. This line of development led to the ORBIT compiler in (Kranz, Kelsey, Rees,
Hudak, Philbin, & Adams, 1986) and to the Standard ML of New Jersey compiler (Appel & Jim,
1989).

(Plotkin, 1975) gives avery clean version of the CPS transformation and presents its theoretical
properties. A very similar version of the transformation is given in (Fischer, 1972; 1999); amore
complex version with some interesting theoretical propertiesisgiven in (Danvy & Filinski, 1992).
The CPS algorithm in chapter 8 is taken from (Sabry & Wadler, 1997), which improved on (Sabry
& Felleisen, 1993), which in turn was motivated by the CPS algorithm of chapter 8 of the first
edition of this book.



A The SLLGEN Parsing System

Programs are just strings of characters. In order to process a program, we need to group these
characters into meaningful units. This grouping is usually divided into two stages: scanning and
parsing.

Scanning is the process of dividing the sequence of charactersinto words, punctuation, etc. These
units are called lexical items, lexemes, or most often tokens. Parsing is the process of organizing
the sequence of tokensinto hierarchical syntactic structures such as expressions, statements, and
blocks. Thisis much like organizing a sentence into clauses.

SLLGEN isapackage for generating scanners and parsersin Scheme. In this appendix, we first
review the basics of scanning and parsing, and then consider how these capabilities are expressed
in SLLGEN.

Scanning

The problem of scanning isillustrated in figure A.1. The figure shows a small segment of a
program, and the way in which it is intended to be broken up into atomic units.

The way in which agiven stream of charactersisto be broken up into lexical itemsis part of the
language specification. This part of the language specification is sometimes called the lexical
specification. Typical pieces of lexical specification might be:

 Any sequence of spaces and newlinesis equivalent to a single space.
» A comment begins with %and continues until the end of the line.

» Anidentifier is asequence of letters and digits starting with aletter.



ir“_ —— space ignored

.I /,——— comment ignored
ident Y ident

foo|lbay %$here is a comment

)| lbegin baz

A
\y distinguish punctuation, keywords from identifiers

Figure A.1 The task of the scanner

The job of the scanner isto go through the input and analyze it to produce data structures with
these items. In a conventional language, the scanner might be a procedure that, when called,
produces the "next" token of the input.

One could write a scanner from scratch, but that would be tedious and error-prone. A better
approach isto write down the lexical specification in a specialized language. The most common
language for this task is the language of regular expressions. We define the language of regular
expressions as follows:

(R} = {character) | (R) (R} | (RYU (R} | (R})" | ~{character)

Each regular expression matches some strings. We can use induction to define the set of strings
matched by each regular expression:

* A character ¢ matches the string consisting of the character c.
 ~C matches any 1-character string other than c.

» RSmatches any string that consists of a string matching R followed by a string matching S This
is called concatenation.

* R0 Smatches any string that either matches R or matches S. Thisis sometimes written R| S and
is sometimes called alternation.



* R* matches any string that is formed by concatenating some number n (n = 0) of strings that
match R. Thisis called the Kleene closure of R.

Some examples may be helpful:
« ab matches only the string ab.
* ab [ cd matches the stringsab and cd.

* (@b O cd)(ab O cd O &f) matches the stringsabab, abcd, abef, cdab, cdcd, and
cdef .

* (ab)* matchesthe empty string, ab, abab, ababab, abababab,....

e (ab O cd)* matchesthe empty string, ab, cd, abab, abcd, cdab, cdcd,
ababab, ... cdcdcd,....

The specifications for our example may be written using regular expressions as

{whitespace) = ({space) U {newline}) ({space) U (newline))’
(comment) = % (~{newline) )"
(identifier) = (letter} ((letter) ' (digit})’

When scanners use regular expressions to specify atoken, the rule is always to take the longest
match. Thisway xyz will be scanned as one identifier, not three.

When the scanner finds atoken, it returns a data structure consisting of at least the following
pieces of data:

* A class, which describes what kind of token it has found. The set of classesis part of the lexical
specification. SLLGEN uses Scheme symbols to distinguish these classes; other syntactic
analyzers might use other data structures.

* A piece of data describing the particular token. The nature of this datais also part of the lexical
specification. For our system, the data is be as follows: for identifiers, the data is a Scheme symbol
built from the string in the token; for a number, the datum is the number described by the number
literal; and for aliteral string, the datum isthe string. String data are used for keywords and
punctuation.In an implementation language that did not have symbols, one might use a string (the
name of the identifier), or an entry into a hash table indexed by identifiers (a symbol table) instead.
Using Scheme spares us these annoyances.



» Some data describing the location of this token in the input. This information may be used by the
parser to help the programmer identify the location of syntactic errors.

In general, the internal structure of tokensis relevant only to the scanner and the parser, so we
shall not describe it in any further detail.

Parsing

Parsing is the process of organizing the sequence of tokensinto hierarchical syntactic structures
such as expressions, statements, and blocks. Thisislike organizing or diagramming a sentence
into clauses. The syntactic structure of alanguage istypically specified using a BNF definition,
also called a context-free grammar (section 1.1.2).

The parser takes as input a sequence of tokens, and its output is an abstract syntax tree (section
2.2.2). The abstract syntax trees produced by an SLLGEN parser can be described by def i ne-
dat at ype. For agiven grammar, there will be one data type for each nonterminal. For each
nonterminal, there will be one variant for each production that has the nonterminal asits left-hand
side. Each variant will have one field for each nonterminal, identifier, or number that appearsin its
right-hand side. A simple example appearsin section 2.2.2. To see what happens when thereis
more than one nonterminal in the grammar, consider a grammar like the one in section 3.9:

(statement) = { (statement) ; (statement) }
while (expression) do {statement)
(identifier) := (expression)
{expression) == (identifier)

({expression) + (expression))

The trees produced by this grammar could be described by this data type

(define-datatype statenment statenent? (conpound-
st at enent (stnmt1l statement?) (stnt2 statement?)) (while-
st at enent (test expression?) (body statement?)) (assign-
st at enent (' hs synbol ?) (rhs expression?)))



(defi ne-dat atype expressi on expression? (var-exp (id synbol?)) (sum
exp (expl expression?) (exp2 expression?)))

For each nonterminal in aright-hand side, the corresponding tree appears as afield; for each identifier, the corresponding
symbol appears as afield. The names of the variants will be specified in the grammar when it iswritten in SLLGEN. The
names of the fields will be automatically generated; here we have introduced some mnemonic names for the fields. For
example, the input

x := foo; while x do x := (x + bar)

produces the output
(compound-statenent (assign-statenent x (var-exp foo)) (while-statenent (var-exp x) (assign-
statenment x (sum expression (var-exp x) (var-exp bar)))))

Throughout this appendix, abstract syntax trees are displayed as lists.

Scannersand Parsersin SLLGEN

Specifying Scanners
In SLLGEN, scanners are specified by regular expressions. Our example would be written in SLLGEN asfollows:

(define scanner-spec-a ‘((white-sp  (whitespace) skip) (comment  ("%" (arbno (not #
\newling))) skip) (identifier  (letter (arbno (or letter digit))) symbol) (number  (digit (arbno digit)) number)))



If the scanner is used with a parser that has keywords or punctuation, likewhi | e or =, it is not
necessary to put these in the scanner manually; the parser-generator will add those automatically.

A scanner specification in SLLGEN isalist that satisfies this grammar:

{scanner-spec) == {{({regexp-and-action}}* }
{regexp- and-mtmn} = ((name) ({{regexp)}') {(outcome})
{name) m= (symbol)
{regexp) m= {string) | letter | digit | whitespace | any
not (character)) | (or {{regexp)}"')
= (arbno (regexp)) | (concat {{regexp)}})
{outcome) == sgkip | symbol | number | string

Eachitem in thelist is a specification of aregular expression, consisting of a name, a sequence of
regular expressions, and an action to be taken on success. The name is a Scheme symbol that will
become the class of the token.

The second part of the specification is a sequence of regular expressions, because the top level of a
<regexp> in a scanner is almost always a concatenation. A regular expression may be a Scheme
string; one of four predefined testers: | et t er (matches any letter), di gi t (matches any digit),
whi t espace (matches any Scheme whitespace character), and any (matches any character); the
negation of a character; or it may be a combination of regular expressions, using a Scheme-like
syntax with or and concat for union and concatenation, and ar bno for Kleene star.

As the scanner works, it collects characters into a buffer. When the scanner determines that it has
found the longest possible match of all the regular expressionsin the specification, it executes the
outcome of the corresponding regular expression.

An outcome can be one of the following:

» The symbol ski p. This meansthisisthe end of atoken, but no token is emitted. The scanner
continues working on the string to find the next token. This action is used for whitespace and
comments.

» The symbol synbol . The charactersin the buffer are converted into a Scheme symbol and a
token is emitted, with the class name asiits class and with the symbol asits datum.

» The symbol nunber . The charactersin the buffer are converted into a Scheme number, and a
token is emitted, with the class name as its class and with the number as its datum.



» Thesymbol st ri ng. The charactersin the buffer are converted into a Scheme string, and atoken
is emitted, with the class name as its class and with that string as its datum.

If thereisatie for longest match between two regular expressions, st r i ng takes precedence over
synbol . Thisrule means that keywords that would otherwise be identifiers are treated as
keywords.

Specifying Grammars.

SLLGEN also includes alanguage for specifying grammars. The ssmple grammar above would be
written in SLLGEN as

(define granmar -

al ' ((statenent ("" statenent ";" statement "") conmpound-

st at enmrent) (st at enment ("while" expression "do" statenent) whi | e-
st at ement) (st at enment (identifier ":=" expression) assi gn-

st at ement) (expression (identifier) var -

exp) (expression ("(" expression "+" expression ")") sum exp)))

A grammar in SLLGEN isalist described by the following grammar:

(grammar} = ({{production}}*)

{production} == ({lhs) ({{rhs-item}}*) {prod-name})
{lhs) = {symbol}

(rhs-item}  u= {symbaol} | {string)

= (arbno {({rhs-item}}")
(separated-list {(rhs-item}}* (string})
(prod-name) == {symbol}

A grammar isalist of productions. The left-hand side of the first production is the start symbol for
the grammar. Each production consists of aleft-hand side (a nonterminal symbol), aright-hand side
(alist of <rhs-item>'s) and a production name. The right-hand side of a production isalist of
symbols or strings. The symbols are nonterminals; strings are literal strings. A



(define scanner-spec-1 . . .)(define grammar-1 . . .)(sllgen: make-defi ne-
dat at ypes scanner-spec-1 gramar-1) (define list-the-

datatypes (Il anbda () (sllgen:list-define-datatypes scanner-spec-

1 grammar-1))) (define just-scan (sllgen:make-string-scanner scanner-spec-
1 grammar-1)) (define scan&parse (sllgen: nmake-string-parser scanner-spec-
1 grammar-1)) (define read-eval -print (sllgen:make-rep-loop "--> " eval-
program (sl1 gen: make- stream parser scanner-spec-1 granmar-1)))

Figure A.2 Using SLLGEN

right-hand side may also include ar bno'sor separ at ed- | i st's; these are discussed below.
The production name is a symbol, which becomes the name of the def i ne- dat at ype variant
corresponding to the production.

In SLLGEN, the grammar must alow the parser to determine which production to use knowing
only (1) what nonterminal it's looking for and (2) the first symbol (token) of the string being
parsed. Grammarsin thisform are called LL(1) grammars; SLLGEN stands for Scheme LL(1)
parser GENerator. Thisis somewhat restrictive in practice, but it is good enough for the purposes
of thisbook. SLLGEN produces awarning if the input grammar fails to meet this restriction.

SLLGEN operations

SLLGEN includes several procedures for incorporating these scanners and grammars into an
executable parser. Figure A.2 shows a sample use of SLLGEN to define a scanner and parser for a
language.



The procedures! | gen: make- def i ne- dat at ypes generates each of thedef i ne-

dat at ype expressions from the grammar for use by cases. The proceduresl! | gen: | i st -
def i ne- dat at ypes generatesthe def i ne- dat at ype expressions again, but returns them
as alist rather than executing them. The field names generated by these procedures are
uninformative because the information is not in the grammar; to get better field names, write out
thedefi ne- dat at ype.

The procedures! | gen: make- st ri ng- scanner takesascanner and agrammar and
generates a scanning procedure. The resulting procedure may be applied to a string and produces a
list of tokens. The grammar is used to add keywords to the resulting scanning procedure. This
procedure is useful primarily for debugging.

The procedures! | gen: make- stri ng- par ser generates aparser. The parser is aprocedure
that takes a string, scans it according to the scanner, parsesit according to the grammar, and
returns an abstract syntax tree. Aswith sl | gen: make- stri ng- scanner, thelitera strings
from the grammar are included in the scanner.

SLLGEN can a'so be used to build a read-eval-print-loop (section 3.2). The procedure sl | gen:
make- st r eam par ser islikethe string version, except that its input is a stream of characters
and its output is a stream of tokens. The procedure sl | gen: make- r ep- | oop takesastring, a
1-argument procedure, and a stream parser, and produces a read-eval-print loop that produces the
string as a prompt on the standard output, reads characters from the standard input, parses them,
prints the result of applying the procedure to the resulting abstract syntax tree, and recurs. For
example:

> (define read-eval -print (sll gen:nmake-rep-loop "--> " eval-
program (sll gen: nake- stream par ser scanner - spec- 3-
1 grammar-3-1)))> (read-eval -print)--> 55--> add1(2)3--> +(addl

(2), - (6,4))5

The way in which control is returned from this loop to the Scheme read-eval-print loop is system-
dependent.



arbno'sandseparated-1list's

Anar bno isaKleene star in the grammar: it matches an abitrary number of repetitions of its entry. For example, the
production

(statement) = begin {{statement) ; }" end

could be written in SLLGEN as

(define granmar-a2 ' ((statenent ("{" (arbno staterment ";") "}") conpound-
st at enent) ..))

This makes a compound statement a sequence of an arbitrary number of semicolon-terminated statements.

Thisar bno generates asingle field in the abstract syntax tree. Thisfield will contain alist of the data for the
nonterminal inside the ar bno. Our example generates the following datatypes:

(define-datatype statenment statenment? (conpound-statenent (compound- st at enent 32 (i st-
of statement?))) ...)

A simpleinteraction looks like:

> (define scané&parse?2 (sl gen: make-string-parser scanner-spec-a gramar-a2))
> (scan&parse2 "x := foo; y := bar; z := uu;")(conmpound-statenment ((assign-
statenent x (var-exp foo)) (assign-statenment y (var-exp bar)) (assign-statement z (var-

exp uu))))

We can put a sequence of nonterminalsinside an ar bno. In this case, we will get several fieldsin the node, one for
each nonterminal; each field will contain alist of syntax trees. For example:

(define grammar-a3 ' ((expression (identifier) var-
exp) (expression ("let" (arbno identifier "=" expression) "in" expression) | et -
exp)))



(define scan&parse3 (sl gen: make-string-parser scanner-spec-a grammar-a3))
This produces the datatype

(defi ne-dat atype expression expression? (var-exp (var-
exp4 synbol ?)) (let-exp (let-exp9 (list-of synbol ?)) (let-
exp7 (list-of expression?)) (let-exp8 expression?)))

Here is an example of this grammar in action:

> (scan&parse3 "let x =y u=vinz)")(let-exp (x u) ((var-exp y) (var-
exp v)) (var-exp z))

The specification (arbno identifier "=" expression) generatesexactly twolists: a
list of identifiersand alist of expressions. Thisis convenient because it will let our interpreters get
at the pieces of the expression directly.

Sometimesiit is helpful for the syntax of alanguage to use lists with separators, not terminators.
Thisis common enough that it is a built-in operation in SLLGEN. We can write

(define grammar-a4 ' ((statenent ("{" (separat ed-
list statement ";") "}") compound- st at enent) co))
This produces the datatype
(define-datatype statenment statenent? (conmpound-statenent ( conmpound-

statenent 103 (list-of statenent?))) cel)



Hereis a sample interaction:

> (define scan&parse4 (sl | gen: make-string-parser scanner-spec-a gramar-
a4))> (scané&parse4 "{ }")(conmpound-statenent () )> (scan&parsed "{x:=vy; u
=v; z :=1t}")(compound-statenent ((assign-statement x (var-

exp vy)) (assign-statenent u (var-exp Vv)) (assign-statenent z (var-
exp t))))> (scan&parsed4 "{x:=y;, u:=v; z :=t ;}")
Error in parsing: at line 1Nonterninal <seplist3> can't begin with string "}"

In the last example, the input string had a terminating semicolon that did not match the grammar, so
an error was reported.

Aswith ar bno, we can place an arbitrary sequence of nonterminalswithinasepar at ed- | i st .
In this case, we will get several fields in the node, one for each nonterminal; each field will contain
alist of syntax trees. Thisis exactly the same data as would be generated by ar bno; only the
concrete syntax differs.

We will occasionally use nested ar bno'sand separ at ed- | i st's. A nontermina inside an
ar bno generates alist, so anonterminal inside an ar bno inside an ar bno generates alist of lists.

As an example, consider aconpound- st at enent similar to theonein gr ammar - a4, except
that we have parallel assignments:

(define grammar-a5 ' ((statenent ("{" (separ at ed-

list (separated-list identifier ",") "

=" (separ at ed-

list expression ",") ") ") conpound-

st at enmrent) (expression (nunber) lit-exp) (expression (identifier) var-
exp) ))> (define scan&parseb (sl | gen: make-string-parser scanner-spec-

a granmmar-ab))



This generates the following datatype for st at enent :

(define-datatype statenent statenent? (compound-statenent ( compound-
statenent4 (list-of (list-of synbol?))) (compound-statenent3 (Ilist-
of (list-of expression?)))))

A typical interaction looks like:

> (scan&parse5 "{ x,y :=u,v; z :=4; t1, t2 :=5, 6 }")(conpound-
statenment ((x y) (z) (t1t2)) (((var-exp u) (var-exp v)) ((rit-
exp 4)) ((lit-exp 5) (lit-exp 6))))

Herethe conpound- st at enent hastwo fields: alist of lists of identifiers, and the matching
list of lists of expressions. In this example we have used separ at ed- | i st instead of ar bno,
but an ar bno would generate the same data.

Exercise A.1[*] Thefollowing grammar for ordinary arithmetic expressions builds in the usual precedence
rules for arithmetic operators:

{arith-expr) z= (arith-term} {{additive-op) {arith-term}}"
{arith-term) = (arith-factor) {{multiplicative-op} {arith-factor) }*
{arith-factor) s= (number)

( {arith-expr} )
{additive-op} n= 4| -

(multiplicative-op) ==+ | /

This grammar says that every arithmetic expression is the sum of a non-empty sequence of terms; every termis
the product of a non-empty sequence of factors; and every factor is either a constant or a parenthesized
expression.

Write alexical specification and agrammar in SLLGEN that will scan and parse strings according
to this grammar. Verify that this grammar handles precedence correctly, so that, for example 3
+2* 66-5 gets grouped correctly, as 3 + (2 x 66) — 5.

Exercise A.2 [* *] Why can't the grammar above be written with Separ at ed- | i st ?

Exercise A.3 [ * *] Write an interpreter that takes the syntax tree produced by the parser of exercise A.1 and
evaluatesit as an arithmetic expression. The parser takes care of the usual arithmetic precedence operations,
but the interpreter will have to take care of associativity, that is, making sure that operations at the same
precedence leve (e.g. additions and subtractions) are performed from left to right. Since there are no variables
in these expressions, this interpreter need not take an environment parameter.



Exercise A.4 [ * *] Extend the language and interpreter of the preceding exerciseto include variables. This
new interpreter will require an environment parameter.

Exercise A.5[*] Add unary minus to the language and interpreter, so that inputs like 3* - 2 are handled
correctly.



B For Further Reading

The most important books are those that change the way one looks at the world. So we will begin
our reading list with two books in this category. The first is Structure and Inter pretation of
Computer Programs, by Hal Abelson and Gerry Sussman with Julie Sussman (1985; 1996). This
is a challenging introduction to programming that emphasizes general problem-solving techniques
and uses Scheme throughout. We often list this book as arequired text in our courses, just because
every computer scientist and programmer should read it. A second mind-expanding book is Godel,
Escher, Bach: An Eternal Golden Braid by Douglas R. Hofstadter (1979). If you have not read
this book, take some time off and get acquainted with it. It isajoy to read and will open your mind
to new and exciting ways to think about recursion, especially asit occurs in the real world, and the
meaning of symbols. We hope our book has as deep an effect on you as these books did on us.

General Readings

Two conferences on the history of programming languages, HOPL | (Wexelblat, 1981) and HOPL
Il (Bergin & Gibson, 1996) provide useful histories of many languages. (Horowitz, 1983)

anthol ogizes many classic papers on programming language design. (Knuth & Pardo, 1977) traces
the earliest development of programming languages. Earlier important books include (Braffort &
Hirschberg, 1963; Steel, 1966).

The major professional organizations in computing, the Association for Computing Machinery
(ACM) and the IEEE Computer Society (IEEE-CYS), are rich sources for learning more about
programming languages. They sponsor several maor conferences and publish severa journals that
cover thisfield. Some of the major conferences are the ACM Symposium on Prin-



ciples of Programming Languages (POPL), the ACM Symposium on Programming Language
Design and Implementation (PLDI), the ACM International Conference on Functional
Programming (ICFP), the ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), and the IEEE International Conference on Computer
Languages (ICCL). In addition, new conferences are created almost every year. For details, see the
listings that are published regularly in the Communications of the ACM and |EEE Compuiter.

Some of the journals that publish important papersin programming languages are ACM
Transactions on Programming Languages and Systems, Journal of Functional Programming,
Higher-Order and Symbolic Computation (previously entitled Lisp and Symbolic Computation),
|EEE Software, Journal of Computer Languages, and Software: Practice and Experience.

We hope we have given you some useful directions. Enjoy!
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Colophon

The authors prepared camera-ready electronic copy for this book using emacs and BTEX2 on

Sun and PC workstations, with the help of bibtex, makeindex, and dvips. Graphic figures were
prepared using xfig.

Custom software, running under Chez Scheme, incorporated the contents of Scheme-code figures
from independent source files. This allowed convenient testing of this code, again using Chez
Scheme.

A

The overall book design was derived from the fbook class and style files of Christopher

X3

Manning. These werein turn partly derived from the Project.

The body text font is Palatino, set 10 on 12 and magnified to about 11 on 13. Program text is
Courier, set 9 on 10 and magnified to about 10 on 12.
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